OFFSET
0,2
COMMENTS
Same as Pisot sequences E(1, 14), L(1, 14), P(1, 14), T(1, 14). Essentially same as Pisot sequences E(14, 196), L(14, 196), P(14, 196), T(14, 196). See A008776 for definitions of Pisot sequences.
Number of n-permutations of 15 objects: l, m, n, o, p, q, r, s, t, u, v, w, z, x, y with repetition allowed and containing no u's, (u-free). Permutations with repetitions! If n=0 then 1 >>14^0=1 "". (no u's.) If n=1 then 13 >>14^1=14, >> l, m, n, o, p, q, r, s, t, v, w, z, x, y. (no u's.) etc. - Zerinvary Lajos, Jul 01 2009
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 14-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 0..100
Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 278.
Tanya Khovanova, Recursive Sequences.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Yash Puri and Thomas Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
Index entries for linear recurrences with constant coefficients, signature (14).
FORMULA
G.f.: 1/(1-14x), e.g.f.: exp(14x)
a(n) = 14^n; a(n) = 14*a(n-1) with a(0)=1. - Vincenzo Librandi, Nov 21 2010
MAPLE
A001023:=-1/(-1+14*z); # conjectured by Simon Plouffe in his 1992 dissertation
MATHEMATICA
Table[14^n, {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2011 *)
Denominator/@HermiteH[Range[0, 20], 5/28] (* Harvey P. Dale, Jul 11 2011 *)
PROG
(Sage) [lucas_number1(n, 14, 0) for n in range(1, 18)]# Zerinvary Lajos, Apr 29 2009
(Magma) [ 14^n: n in [0..20] ]; // Vincenzo Librandi, Nov 21 2010
(Magma) [ n eq 1 select 1 else 14*Self(n-1): n in [1..21] ];
(PARI) a(n)=14^n \\ Charles R Greathouse IV, Nov 18 2011
(Python) print([14**n for n in range(21)]) # Michael S. Branicky, Jan 14 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from James A. Sellers, Sep 19 2000
STATUS
approved