login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001023
Powers of 14.
(Formerly M4949 N2120)
32
1, 14, 196, 2744, 38416, 537824, 7529536, 105413504, 1475789056, 20661046784, 289254654976, 4049565169664, 56693912375296, 793714773254144, 11112006825558016, 155568095557812224, 2177953337809371136, 30491346729331195904, 426878854210636742656, 5976303958948914397184, 83668255425284801560576
OFFSET
0,2
COMMENTS
Same as Pisot sequences E(1, 14), L(1, 14), P(1, 14), T(1, 14). Essentially same as Pisot sequences E(14, 196), L(14, 196), P(14, 196), T(14, 196). See A008776 for definitions of Pisot sequences.
Number of n-permutations of 15 objects: l, m, n, o, p, q, r, s, t, u, v, w, z, x, y with repetition allowed and containing no u's, (u-free). Permutations with repetitions! If n=0 then 1 >>14^0=1 "". (no u's.) If n=1 then 13 >>14^1=14, >> l, m, n, o, p, q, r, s, t, v, w, z, x, y. (no u's.) etc. - Zerinvary Lajos, Jul 01 2009
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 14-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
Tanya Khovanova, Recursive Sequences.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Yash Puri and Thomas Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
FORMULA
G.f.: 1/(1-14x), e.g.f.: exp(14x)
A000005(a(n)) = A000290(n+1). - Reinhard Zumkeller, Mar 04 2007
a(n) = 14^n; a(n) = 14*a(n-1) with a(0)=1. - Vincenzo Librandi, Nov 21 2010
MAPLE
A001023:=-1/(-1+14*z); # conjectured by Simon Plouffe in his 1992 dissertation
MATHEMATICA
Table[14^n, {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2011 *)
Denominator/@HermiteH[Range[0, 20], 5/28] (* Harvey P. Dale, Jul 11 2011 *)
PROG
(Sage) [lucas_number1(n, 14, 0) for n in range(1, 18)]# Zerinvary Lajos, Apr 29 2009
(Magma) [ 14^n: n in [0..20] ]; // Vincenzo Librandi, Nov 21 2010
(Magma) [ n eq 1 select 1 else 14*Self(n-1): n in [1..21] ];
(PARI) a(n)=14^n \\ Charles R Greathouse IV, Nov 18 2011
(Python) print([14**n for n in range(21)]) # Michael S. Branicky, Jan 14 2021
CROSSREFS
Row 9 of A329332.
Sequence in context: A207743 A207720 A171288 * A278476 A067221 A072533
KEYWORD
nonn,easy
EXTENSIONS
More terms from James A. Sellers, Sep 19 2000
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy