login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001352
a(0) = 1, a(1) = 6, a(2) = 24; for n>=3, a(n) = 4a(n-1) - a(n-2).
(Formerly M4164 N1731)
3
1, 6, 24, 90, 336, 1254, 4680, 17466, 65184, 243270, 907896, 3388314, 12645360, 47193126, 176127144, 657315450, 2453134656, 9155223174, 34167758040, 127515808986, 475895477904, 1776066102630, 6628368932616, 24737409627834, 92321269578720, 344547668687046
OFFSET
0,2
COMMENTS
Also the coordination sequence of a {4,6} tiling of the hyperbolic plane, where there are 6 squares (with vertex angles Pi/3) around every vertex. - toen (tca110(AT)rsphysse.anu.edu.au), May 16 2005
a(n) is related to the almost-equilateral Heronian triangles because it is the area of the Heronian triangle with edge lengths A003500(n)-1, A003500(n)+1 and 4. - Herbert Kociemba, Mar 19 2021
REFERENCES
Bastida, Julio R. Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163--166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009) - From N. J. A. Sloane, May 30 2012
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
D. Fortin, B-spline Toeplitz inverse under corner perturbations, International Journal of Pure and Applied Mathematics, Volume 77, No. 1, 2012, 107-118. - From N. J. A. Sloane, Oct 22 2012
T. N. E. Greville, Table for third-degree spline interpolations with equally spaced arguments, Math. Comp., 24 (1970), 179-183.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
G.f.: 1+6x/(1-4x+x^2). - R. J. Mathar, Jun 06 2007
a(n) = sqrt(3)*(-(2-sqrt(3))^n+(2+sqrt(3))^n) for n>0. - Colin Barker, Oct 12 2015
MAPLE
A001352 := proc(n) coeftayl(1+6*x/(1-4*x+x^2), x=0, n) ; end: for n from 0 to 30 do printf("%d, ", A001352(n)) ; od ; # R. J. Mathar, Jun 06 2007
A001352:=(z+1)**2/(1-4*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
MATHEMATICA
Join[{1}, LinearRecurrence[{4, -1}, {6, 24}, 30]] (* Harvey P. Dale, Jul 20 2011 *)
PROG
(PARI) Vec((x+1)^2/(x^2-4*x+1) + O(x^40)) \\ Colin Barker, Oct 12 2015
CROSSREFS
First differences of A082841. Pairwise sums of A001834.
Sequence in context: A181618 A002919 A006780 * A155602 A179716 A326755
KEYWORD
nonn,easy
EXTENSIONS
More terms from R. J. Mathar, Jun 06 2007
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy