login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A001544
A nonlinear recurrence: a(n) = a(n-1)^2 - 6*a(n-1) + 6, with a(0) = 1, a(1) = 7.
(Formerly M4346 N1820)
5
1, 7, 13, 97, 8833, 77968897, 6079148431583233, 36956045653220845240164417232897, 1365749310322943329964576677590044473746108255675592519835615233
OFFSET
0,2
COMMENTS
This is the special case k=6 of sequences with exact mutual k-residues. In general, a(1)=k+1 and a(n)=min{m | m>a(n-1), mod(m,a(i))=k, i=1,...,n-1}. k=1 gives Sylvester's sequence A000058 and k=2 Fermat sequence A000215. - Seppo Mustonen, Sep 04 2005
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(n) ~ c^(2^n), where c = 1.76450357631319101484804524709844019487003729926754942591419313922841785792... . - Vaclav Kotesovec, Dec 17 2014
MATHEMATICA
Flatten[{1, RecurrenceTable[{a[1]==7, a[n]==a[n-1]*(a[n-1]-6)+6}, a, {n, 1, 10}]}] (* Vaclav Kotesovec, Dec 17 2014 *)
Join[{1}, NestList[#^2-6#+6&, 7, 10]] (* Harvey P. Dale, Nov 19 2024 *)
PROG
(PARI) a(n)=if(n<1, n==0, if(n==1, 7, n=a(n-1); n^2-6*n+6))
CROSSREFS
Column k=6 of A177888. - Alois P. Heinz, Nov 07 2012
Sequence in context: A110293 A253333 A039687 * A202152 A136720 A323468
KEYWORD
nonn
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy