OFFSET
0,2
COMMENTS
Consider the equation core(x) = core(2x+1) where core(x) is the smallest number such that x*core(x) is a square: solutions are given by a(n)^2, n > 0. - Benoit Cloitre, Apr 06 2002
Terms > 0 give numbers k which are solutions to the inequality |round(sqrt(2)*k)/k - sqrt(2)| < 1/(2*sqrt(2)*k^2). - Benoit Cloitre, Feb 06 2006
Also numbers m such that A125650(6*m^2) is an even perfect square, where A124650(m) is a numerator of m*(m+3)/(4*(m+1)*(m+2)) = Sum_{k=1..m} 1/(k*(k+1)*(k+2)). Sequence A033581 is a bisection of A125651. - Alexander Adamchuk, Nov 30 2006
The upper principal convergents to 2^(1/2), beginning with 3/2, 17/12, 99/70, 577/408, comprise a strictly decreasing sequence; essentially, numerators = A001541 and denominators = {a(n)}. - Clark Kimberling, Aug 26 2008
Even Pell numbers. - Omar E. Pol, Dec 10 2008
Numbers k such that 2*k^2+1 is a square. - Vladimir Joseph Stephan Orlovsky, Feb 19 2010
These are the integer square roots of the Half-Squares, A007590(k), which occur at values of k given by A001541. Also the numbers produced by adding m + sqrt(floor(m^2/2) + 1) when m is in A002315. See array in A227972. - Richard R. Forberg, Aug 31 2013
A001541(n)/a(n) is the closest rational approximation of sqrt(2) with a denominator not larger than a(n), and 2*a(n)/A001541(n) is the closest rational approximation of sqrt(2) with a numerator not larger than 2*a(n). These rational approximations together with those obtained from the sequences A001653 and A002315 give a complete set of closest rational approximations of sqrt(2) with restricted numerator as well as denominator. - A.H.M. Smeets, May 28 2017
Conjecture: Numbers k such that c/m < k for all natural a^2 + b^2 = c^2 (Pythagorean triples), a < b < c and a+b+c = m. Numbers which correspondingly minimize c/m are A002939. - Lorraine Lee, Jan 31 2020
All of the positive integer solutions of a*b + 1 = x^2, a*c + 1 = y^2, b*c + 1 = z^2, x + z = 2*y, 0 < a < b < c are given by a=a(n), b=A005319(n), c=a(n+1), x=A001541(n), y=A001653(n+1), z=A002315(n) with 0 < n. - Michael Somos, Jun 26 2022
REFERENCES
Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002; pp. 480-481.
Thomas Koshy, Fibonacci and Lucas Numbers with Applications, 2001, Wiley, pp. 77-79.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
P.-F. Teilhet, Query 2376, L'Intermédiaire des Mathématiciens, 11 (1904), 138-139. - N. J. A. Sloane, Mar 08 2022
LINKS
T. D. Noe, Table of n, a(n) for n = 0..100
I. Adler, Three Diophantine equations - Part II, Fib. Quart., 7 (1969), 181-193.
Christian Aebi and Grant Cairns, Lattice Equable Parallelograms, arXiv:2006.07566 [math.NT], 2020.
Hacène Belbachir, Soumeya Merwa Tebtoub, László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
H. Brocard, Notes élémentaires sur le problème de Peel, Nouvelle Correspondance Mathématique, 4 (1878), 161-169.
A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929. See Vol. 1, page xxxv.
S. Falcon, Relationships between Some k-Fibonacci Sequences, Applied Mathematics, 2014, 5, 2226-2234.
R. J. Hetherington, Letter to N. J. A. Sloane, Oct 26 1974.
J. M. Katri and D. R. Byrkit, Problem E1976, Amer. Math. Monthly, 75 (1968), 683-684.
Tanya Khovanova, Recursive Sequences.
E. Kilic, Y. T. Ulutas, and N. Omur, A Formula for the Generating Functions of Powers of Horadam's Sequence with Two Additional Parameters, J. Int. Seq. 14 (2011) #11.5.6, Table 3, k=1.
D. H. Lehmer, On the multiple solutions of the Pell equation, Annals Math., 30 (1928), 66-72.
D. H. Lehmer, On the multiple solutions of the Pell equation (annotated scanned copy).
Mathematical Reflections, Solution to Problem O271, Issue 5, 2013, p 22.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
B. Polster and M. Ross, Marching in squares, arXiv preprint arXiv:1503.04658 [math.HO], 2015.
Mark A. Shattuck, Tiling proofs of some formulas for the Pell numbers of odd index, Integers, 9 (2009), 53-64.
Soumeya M. Tebtoub, Hacène Belbachir, and László Németh, Integer sequences and ellipse chains inside a hyperbola, Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020), hal-02918958 [math.cs], 17-18.
Index entries for linear recurrences with constant coefficients, signature (6,-1).
FORMULA
a(n) = 2*A001109(n).
a(n) = ((3+2*sqrt(2))^n - (3-2*sqrt(2))^n) / (2*sqrt(2)).
G.f.: 2*x/(1-6*x+x^2).
a(n) = sqrt(2*(A001541(n))^2 - 2)/2. - Barry E. Williams, May 07 2000
a(n) = (C^(2n) - C^(-2n))/sqrt(8) where C = sqrt(2) + 1. - Gary W. Adamson, May 11 2003
For all terms x of the sequence, 2*x^2 + 1 is a square. Limit_{n->oo} a(n)/a(n-1) = 3 + 2*sqrt(2). - Gregory V. Richardson, Oct 10 2002
For n > 0: a(n) = A001652(n) + A046090(n) - A001653(n); e.g., 70 = 119 + 120 - 169. Also a(n) = A001652(n - 1) + A046090(n - 1) + A001653(n - 1); e.g., 70 = 20 + 21 + 29. Also a(n)^2 + 1 = A001653(n - 1)*A001653(n); e.g., 12^2 + 1 = 145 = 5*29. Also a(n + 1)^2 = A084703(n + 1) = A001652(n)*A001652(n + 1) + A046090(n)*A046090(n + 1). - Charlie Marion, Jul 01 2003
a(n) = ((1+sqrt(2))^(2*n) - (1-sqrt(2))^(2*n))/(2*sqrt(2)). - Antonio Alberto Olivares, Dec 24 2003
2*A001541(k)*A001653(n)*A001653(n+k) = A001653(n)^2 + A001653(n+k)^2 + a(k)^2; e.g., 2*3*5*29 = 5^2 + 29^2 + 2^2; 2*99*29*5741 = 29^2 + 5741^2 + 70^2. - Charlie Marion, Oct 12 2007
a(n) = sinh(2*n*arcsinh(1))/sqrt(2). - Herbert Kociemba, Apr 24 2008
a(n) = 3*a(n-1) + 2*A001541(n-1); e.g., a(4) = 70 = 3*12 + 2*17. - Zak Seidov, Dec 19 2013
Sum _{n >= 1} 1/( a(n) + 1/a(n) ) = 1/2. - Peter Bala, Mar 25 2015
E.g.f.: exp(3*x)*sinh(2*sqrt(2)*x)/sqrt(2). - Ilya Gutkovskiy, Dec 07 2016
a(n) = -a(-n) for all n in Z. - Michael Somos, Jan 20 2017
From A.H.M. Smeets, May 28 2017: (Start)
A051009(n) = a(2^(n-2)).
a(2n) = 2*a(2)*A001541(n).
EXAMPLE
G.f. = 2*x + 12*x^2 + 70*x^3 + 408*x^4 + 2378*x^5 + 13860*x^6 + ...
MAPLE
A001542:=2*z/(1-6*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
seq(combinat:-fibonacci(2*n, 2), n = 0..20); # Peter Luschny, Jun 28 2018
MATHEMATICA
LinearRecurrence[{6, -1}, {0, 2}, 30] (* Harvey P. Dale, Jun 11 2011 *)
Fibonacci[2*Range[0, 20], 2] (* G. C. Greubel, Dec 23 2019 *)
Table[2 ChebyshevU[-1 + n, 3], {n, 0, 20}] (* Herbert Kociemba, Jun 05 2022 *)
PROG
(Haskell)
a001542 n = a001542_list !! n
a001542_list =
0 : 2 : zipWith (-) (map (6 *) $ tail a001542_list) a001542_list
-- Reinhard Zumkeller, Aug 14 2011
(Maxima)
a[0]:0$
a[1]:2$
a[n]:=6*a[n-1]-a[n-2]$
A001542(n):=a[n]$
makelist(A001542(x), x, 0, 30); /* Martin Ettl, Nov 03 2012 */
(PARI) {a(n) = imag( (3 + 2*quadgen(8))^n )}; /* Michael Somos, Jan 20 2017 */
(PARI) vector(21, n, 2*polchebyshev(n-1, 2, 33) ) \\ G. C. Greubel, Dec 23 2019
(Python)
l=[0, 2]
for n in range(2, 51): l+=[6*l[n - 1] - l[n - 2], ]
print(l) # Indranil Ghosh, Jun 06 2017
(Magma) I:=[0, 2]; [n le 2 select I[n] else 6*Self(n-1) -Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 23 2019
(Sage) [2*chebyshev_U(n-1, 3) for n in (0..20)] # G. C. Greubel, Dec 23 2019
(GAP) a:=[0, 2];; for n in [3..20] do a[n]:=6*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved