OFFSET
1,3
COMMENTS
Considers recurrences u(n+1) = (d/dx) u_n(x)*u_{n-1}(x) and u(n+1) = x*(d/dx) u_n(x)*u_{n-1}(x). In latter, take u_0=1, u_1=x; setting x=1 gives sequence shown here.
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
H. W. Gould, Operational recurrences involving Fibonacci numbers, Fib. Quart., 1 (No. 1, 1963), 30-33.
FORMULA
Product F_k^F_{n+1-k}, k=1..n, F = Fibonacci numbers.
MATHEMATICA
Table[Product[Fibonacci[k]^Fibonacci[n+1-k], {k, n}], {n, 12}] (* Harvey P. Dale, May 16 2012 *)
CROSSREFS
KEYWORD
nice,easy,nonn,changed
AUTHOR
EXTENSIONS
More terms from Harvey P. Dale, May 16 2012
STATUS
approved