login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A224883
a(n) = 2^(n^2) * binomial(n-1 + 1/2^(n-1), n).
3
1, 2, 6, 60, 2550, 476476, 384115732, 1305385229720, 18382187112952806, 1060603038396055882860, 248959068848694059131153020, 236689359381076468102847994171880, 908758498534088142521911865612937786108, 14063550492706544341683006937639901739122886616
OFFSET
0,2
LINKS
FORMULA
G.f.: Sum_{n>=0} (-2)^n * log(1 - x/2^n)^n/n! = Sum_{n>=0} a(n)*x^n/2^(n^2).
a(n) = (2^n/n!) * Product_{k=0..n-1} (2^(n-1)*k + 1).
a(n) = [x^n] 1/(1 - 2^n*x)^(2/2^n).
EXAMPLE
G.f.: A(x) = 1 + 2*x/2 + 6*x^2/2^4 + 60*x^3/2^9 + 2550*x^4/2^16 + 476476*x^5/2^25 +...+ a(n)*x^n/2^(n^2) +...
where
A(x) = 1 - 2*log(1-x/2) + 4*log(1-x/4)^2/2! - 8*log(1-x/8)^3/3! + 16*log(1-x/16)^4/4! +...+ (-2)^n*log(1-x/2^n)^n/n! +...
Illustrate a(n) = [x^n] 1/(1 - 2^n*x)^(2/2^n):
(1-x)^(-2/1) = (1) + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 6*x^5 +...
(1-2*x)^(-2/2) = 1 + (2)*x + 4*x^2 + 8*x^3 + 16*x^4 + 32*x^5 +...
(1-4*x)^(-2/4) = 1 + 2*x + (6)*x^2 + 20*x^3 + 70*x^4 + 252*x^5 +...
(1-8*x)^(-2/8) = 1 + 2*x + 10*x^2 + (60)*x^3 + 390*x^4 + 2652*x^5 +...
(1-16*x)^(-2/16) = 1 + 2*x + 18*x^2 + 204*x^3 + (2550)*x^4 + 33660*x^5 +...
(1-32*x)^(-2/32) = 1 + 2*x + 34*x^2 + 748*x^3 + 18326*x^4 + (476476)*x^5 +...
where the coefficients in parenthesis form the initial terms of this sequence.
Particular values.
A(1) = 1 + 2*log(2) + 4*log(4/3)^2/2! + 8*log(8/7)^3/3! + 16*log(16/15)^4/4! +...
A(1/2) = 1 + 2*log(4/3) + 4*log(8/7)^2/2! + 8*log(16/15)^3/3! +...
A(1/4) = 1 + 2*log(8/7) + 4*log(16/15)^2/2! + 8*log(32/31)^3/3! +...
A(3/2) = 1 + 2*log(4) + 4*log(8/5)^2/2! + 8*log(16/13)^3/3! + 16*log(32/29)^4/4! +...
Explicitly,
A(1) = 2.55500248436101360804704969796239525102504151...
A(1/2) = 1.61138451105646219391156983544059555709337920...
A(1/4) = 1.27543593708175757392940597050033002345086132...
A(3/2) = 4.22639446385430649517540615961613624264078875...
MATHEMATICA
Table[2^(n^2) Binomial[n-1+1/2^(n-1), n], {n, 0, 20}] (* Harvey P. Dale, Feb 01 2017 *)
PROG
(PARI) {a(n)=2^(n^2)*binomial(n-1+1/2^(n-1), n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n)=(2^n/n!)*prod(k=0, n-1, 2^(n-1)*k + 1)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n)=2^(n^2)*polcoef(sum(k=0, n, (-2)^k*log(1-x/2^k +x*O(x^n))^k/k!), n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A156472 A108640 A084971 * A001577 A156503 A077175
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 23 2013
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy