login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002577
Number of partitions of 2^n into powers of 2.
(Formerly M1239 N0473)
40
1, 2, 4, 10, 36, 202, 1828, 27338, 692004, 30251722, 2320518948, 316359580362, 77477180493604, 34394869942983370, 27893897106768940836, 41603705003444309596874, 114788185359199234852802340, 588880400923055731115178072778, 5642645813427132737155703265972004
OFFSET
0,2
COMMENTS
For given m, the general formula for t_m(n, k) and the corresponding tables T, computed as in the example, determine a family of related sequences (placed in the rows or in the columns of T). For example, the numbers from the second row of T, computed for given m and n > 2, are the (m+2)-gonal numbers. So the second row contains the first members of: A000290 (the square numbers) when m=2, A000326 (the pentagonal numbers) when m=3, and so on. But rows IV, V etc. of the given table are not represented in the OEIS till now. - Valentin Bakoev, Feb 25 2009; edited by M. F. Hasler, Feb 09 2014
REFERENCES
R. F. Churchhouse, Binary partitions, pp. 397-400 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
Lawrence, Jim. "Dual-Antiprisms and Partitions of Powers of 2 into Powers of 2." Discrete & Computational Geometry, Vol. 16 (2019): 465-478. See page 466.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
V. Bakoev, Algorithmic approach to counting of certain types m-ary partitions, Discrete Mathematics, 275 (2004) pp.17-41.
C. Banderier, H.-K. Hwang, V. Ravelomanana and V. Zacharovas, Analysis of an exhaustive search algorithm in random graphs and the n^{c logn}-asymptotics, 2012. - From N. J. A. Sloane, Dec 23 2012
G. Blom and C.-E. Froeberg, Om myntvaexling, (On money-changing) [ Swedish ], Nordisk Matematisk Tidskrift, 10 (1962), 55-69, 103.
G. Blom and C.-E. Froeberg, Om myntvaexling (On money-changing) [Swedish], Nordisk Matematisk Tidskrift, 10 (1962), 55-69, 103. [Annotated scanned copy]
R. F. Churchhouse, Congruence properties of the binary partition function, Math. Proc. Cambr. Phil. Soc. vol 66, no. 2 (1969), 365-370.
Carl-Erik Froberg, Accurate estimation of the number of binary partitions, BIT Numerical Mathematics vol. 17, no 4 (1977) 386-391.
C.-E. Froberg, Accurate estimation of the number of binary partitions [Annotated scanned copy]
H. Minc, The free commutative entropic logarithmetic, Proc. Roy. Soc. Edinburgh Sect. A 65 1959 177-192 (1959).
FORMULA
a(n) is about 0.9233*Sum_j {i=0, 1, 2, 3, ...} 2^(j*(2n-j-1)/2)/j!. - Henry Bottomley, Jul 23 2003
a(n) = A078121(n+1, 1). - Paul D. Hanna, Sep 13 2004
A002577(n)-1 = A125792(n). - Let m > 1, n > 0 and k >= 0. The general formula for the number of all partitions of k*m^n into powers of m is t_m(n, k)= k+1 if n=1, t_m(n, k)= 1 if k=0, and t_m(n, k)= t_m(n, k-1) + t_m(n-1, k*m) if n > 1 and k > 0. A002577 is obtained for m=2 and n=1,2,3,... - Valentin Bakoev, Feb 25 2009
a(n) = [x^(2^n)] 1/Product_{j>=0} (1-x^(2^j)). - Alois P. Heinz, Sep 27 2011
EXAMPLE
To compute t_2(6,1) we can use a table T, defined as T[i,j]= t_2(i,j), for i=1,2,...,6(=n), and j= 0,1,2,...,32(= k*m^{n-1}). It is: 1,2,3,4,5,6,7,8,9...,33; 1,4,9,16,25,36,49...,81; (so the second row contains the first members of A000290 -- the square numbers) 1,10,35,84,165,...,969; (so the third row contains the first members of A000447. The r-th tetrahedral number is given by formula r(r+1)(r+2)/6. This row (also A000447) contains the tetrahedral numbers, obtained for r=1,3,5,7,...) 1,36,201,656,1625; 1,202,1827; 1,1828; Column 1 contains the first 6 members of A002577. - Valentin Bakoev, Feb 25 2009
G.f. = 1 + 2*x + 4*x^2 + 10*x^3 + 36*x^4 + 202*x^5 + 1828*x^6 + ...
MAPLE
A002577 := proc(n) if n<=1 then n+1 else A000123(2^(n-1)); fi; end;
MATHEMATICA
$RecursionLimit = 10^5; (* b = A000123 *) b[0] = 1; b[n_?EvenQ] := b[n] = b[n-1] + b[n/2]; b[n_?OddQ] := b[n] = b[n-1] + b[(n-1)/2]; a[n_] := b[2^(n-1)]; a[0] = 1; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Nov 23 2011 *)
a[ n_] := SeriesCoefficient[ 1 / Product[ 1 - x^2^k, {k, 0, n}], {x, 0, 2^n}]; (* Michael Somos, Apr 21 2014 *)
PROG
(PARI) a(n)=polcoeff(prod(j=0, n, 1/(1-x^(2^j)+x*O(x^(2^n)))), 2^n) \\ Paul D. Hanna
(Haskell)
import Data.MemoCombinators (memo2, list, integral)
a002577 n = a002577_list !! n
a002577_list = f [1] where
f xs = (p' xs $ last xs) : f (1 : map (* 2) xs)
p' = memo2 (list integral) integral p
p _ 0 = 1; p [] _ = 0
p ks'@(k:ks) m = if m < k then 0 else p' ks' (m - k) + p' ks m
-- Reinhard Zumkeller, Nov 27 2015
CROSSREFS
a(n) = A000123(2^(n-1)) = A018818(2^n).
Column k=2 of A145515, diagonal of A152977. - Alois P. Heinz, Mar 25 2012
See also A002575, A002576.
A column of A125790.
Sequence in context: A210777 A210778 A210779 * A076132 A371999 A047142
KEYWORD
nonn,easy,nice
EXTENSIONS
Edited by M. F. Hasler, Feb 09 2014
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy