login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003059
k appears 2k-1 times. Also, square root of n, rounded up.
52
1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
OFFSET
1,2
COMMENTS
n+1 first appears in the sequence at the A002522(n)-th entry (since the ultimate occurrence of n is n^2). a(n) refers to the greatest minimal length of monotone subsequence (i.e.either increasing or decreasing) contained within any sequence of n distinct numbers,according to the Erdős-Szekeres theorem. - Lekraj Beedassy, May 20 2003
With offset 0, apparently the least k such that binomial(2n,n-k) < (1/e) binomial(2n,n). - T. D. Noe, Mar 12 2009
a(n) is the number of nonnegative integer solutions of equation x + y^2 = n - 1. - Ran Pan, Oct 02 2015
Also the burning number of the cycle graph C_n (for n >= 4) and the path graph (for n >= 1). - Eric W. Weisstein, Jan 10 2024
LINKS
Eric Weisstein's World of Mathematics, Burning Number
Eric Weisstein's World of Mathematics, Cycle Graph
Eric Weisstein's World of Mathematics, Path Graph
FORMULA
a(n) = ceiling(sqrt(n)).
G.f.: (Sum_{n>=0} x^(n^2)) * x/(1-x). - Michael Somos, May 03 2003
a(n) = Sum_{k=0..n-1} A010052(k). - Reinhard Zumkeller, Mar 01 2009
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2) (A002162). - Amiram Eldar, Sep 29 2022
MAPLE
A003059:=n->ceil(sqrt(n)); seq(A003059(k), k=1..100); # Wesley Ivan Hurt, Nov 08 2013
MATHEMATICA
Table[ Table[n, {2n - 1}], {n, 1, 10}] // Flatten (* Jean-François Alcover, Jun 10 2013 *)
Ceiling[Sqrt[Range[100]]] (* G. C. Greubel, Nov 14 2018 *)
Table[PadRight[{}, 2k-1, k], {k, 10}]//Flatten (* Harvey P. Dale, Jun 07 2020 *)
PROG
(PARI) a(n)=if(n<1, 0, 1+sqrtint(n-1))
(Haskell)
a003059 n = a003059_list !! (n-1)
a003059_list = concat $ zipWith ($) (map replicate [1, 3..]) [1..]
-- Reinhard Zumkeller, Mar 18 2011
(Sage) [ceil(sqrt(n)) for n in (1..100)] # G. C. Greubel, Nov 14 2018
(Magma) [Ceiling(Sqrt(n)): n in [1..100]]; // G. C. Greubel, Nov 14 2018
(Python)
from math import isqrt
def A003059(n): return isqrt(n-1)+1 # Chai Wah Wu, Nov 14 2022
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
Name edited by M. F. Hasler, Nov 13 2018
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy