login
A003221
Number of even permutations of length n with no fixed points.
(Formerly M0922)
11
1, 0, 0, 2, 3, 24, 130, 930, 7413, 66752, 667476, 7342290, 88107415, 1145396472, 16035550518, 240533257874, 3848532125865, 65425046139840, 1177650830516968, 22375365779822562, 447507315596451051, 9397653627525472280, 206748379805560389930
OFFSET
0,4
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Bashir Ali and A. Umar, Some combinatorial properties of the alternating group, Southeast Asian Bulletin Math. 32 (2008), 823-830. [From Abdullahi Umar, Oct 09 2008]
L. Carlitz and R. A. Scoville, Problem E2354, Amer. Math. Monthly, 79 (1972), 394.
G. Gordon and E. McMahon, Moving faces to other places: facet derangements, Amer. Math. Monthly, 117 (2010), 865-88.
G. Gordon and E. McMahon, Moving faces to other places: facet derangements, arXiv:0906.4253 [math.CO], 2009.
Karen Meagher, Peter Sin, All 2-transitive groups have the EKR-module property, arXiv:1911.11252 [math.CO], 2019.
Piotr Miska, Arithmetic Properties of the Sequence of Derangements and its Generalizations, arXiv:1508.01987 [math.NT], 2015. (see Chapter 5 p. 44)
J. M. Thomas, The number of even and odd absolute permutations of n letters, Bull. Amer. Math. Soc. 31 (1925), 303-304.
FORMULA
a(n) = (A000166(n)-(-1)^n*(n-1))/2.
From Abdullahi Umar, Oct 09 2008: (Start)
a(n) = (n!/2)*sum(((-1)^i)/i!, i=0..n-2)+((-1)^(n-1))*(n-1) for n>1, a(0)=1, a(1)=0.
a(n) = (n-1)*(a(n-1)+a(n-2))+((-1)^(n-1))*(n-1) for n>1, a(0)=1, a(1)=0.
a(n) = n*a(n-1)+((-1)^(n-1))*(n-2)*(n+1)/2 for n>0, a(0)=1.
E.g.f.: (1-x^2/2)*exp(-x)/(1-x). (End)
MAPLE
A003221 := n -> ((-1)^n*hypergeom([-n, 1], [], 1)-(-1)^n*(n-1))/2:
seq(simplify(A003221(n)), n=0..22); # Peter Luschny, May 09 2017
MATHEMATICA
a[n_] := (Round[n!/E] - (-1)^n*(n - 1))/2; a[0] = 1; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Dec 13 2011, after Simon Plouffe *)
Range[0, 25]! CoefficientList[Series[(1 - x^2 / 2) E^(-x) / (1 - x), {x, 0, 25}], x] (* Vincenzo Librandi, Aug 11 2015 *)
PROG
(Python)
from __future__ import division
A003221_list, m, x = [], -1, 0
for n in range(10*2):
....x, m = x*n + m*(n*(n-1)//2-1), -m
....A003221_list.append(x) # Chai Wah Wu, Nov 03 2014
(PARI) a(n) = ( n!*sum(r=2, n, (-1)^r/r!) + (-1)^(n-1)*(n-1))/2; \\ Michel Marcus, Apr 22 2016
CROSSREFS
Sequence in context: A012304 A047157 A353165 * A359951 A013312 A013318
KEYWORD
nonn,easy,nice
EXTENSIONS
Typo in second formula fixed by Josh Swanson, Nov 10 2013
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy