login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A003948
Expansion of (1+x)/(1-5*x).
64
1, 6, 30, 150, 750, 3750, 18750, 93750, 468750, 2343750, 11718750, 58593750, 292968750, 1464843750, 7324218750, 36621093750, 183105468750, 915527343750, 4577636718750, 22888183593750, 114440917968750, 572204589843750, 2861022949218750, 14305114746093750
OFFSET
0,2
COMMENTS
Coordination sequence for infinite tree with valency 6.
The n-th term of the coordination sequence of the infinite tree with valency 2m is the same as the number of reduced words of size n in the free group on m generators. In the five sequences A003946, A003948, A003950, A003952, A003954, m is 2, 3, 4, 5, 6. - Avi Peretz (njk(AT)netvision.net.il), Feb 23 2001 and Ola Veshta (olaveshta(AT)my-deja.com), Mar 30 2001
Hamiltonian path in S_4 X P_2n.
For n>=1, a(n+1) is equal to the number of functions f:{1,2,...,n+1}->{1,2,3,4,5,6} such that for fixed, different x_1, x_2,...,x_n in {1,2,...,n+1} and fixed y_1, y_2,...,y_n in {1,2,3,4,5,6} we have f(x_i)<>y_i, (i=1..n). - Milan Janjic, May 10 2007
For n>=1, a(n) equals the numbers of words of length n over the alphabet {0..5} with no two adjacent letters identical. - Milan Janjic, Jan 31 2015 [Corrected by David Nacin, May 30 2017]
a(n) equals the numbers of sequences of length n on {0,...,5} where no two adjacent terms differ by three. - David Nacin, May 30 2017
It appears that these are the only n>1 for which alpha(n)=2n, where alpha(n) is the entry point of n in the Fibonacci sequence, see A001177. - Philippe Schnoebelen, Apr 11 2024
FORMULA
G.f.: (1+x)/(1-5*x).
a(n) = Sum_{k=0..n} A029653(n, k)*x^k for x = 4. - Philippe Deléham, Jul 10 2005
The Hankel transform of this sequence is [1,-6,0,0,0,0,0,0,0,0,...]. - Philippe Deléham, Nov 21 2007
a(n) = 6*5^(n-1) for n>0, a(0)=1. - Vincenzo Librandi, Nov 18 2010
G.f.: 2/x - 5 - 8/(x*U(0)) where U(k)= 1 + 2/(3^k - 3^k/(2 + 1 - 12*x*3^k/(6*x*3^k + 1/U(k+1)))) ; (continued fraction, 4-step). - Sergei N. Gladkovskii, Oct 30 2012
E.g.f.: (6*exp(5*x) - 1)/5. - Ilya Gutkovskiy, Dec 10 2016
Sum_{n>=0} 1/a(n) = 29/24. - Bernard Schott, Oct 25 2021
MAPLE
k := 6; if n = 0 then 1 else k*(k-1)^(n-1); fi;
MATHEMATICA
q = 6; Join[{a = 1}, Table[If[n != 0, a = q*a - a, a = q*a], {n, 0, 25}]] (* and *) Join[{1}, 6*5^Range[0, 25]] (* Vladimir Joseph Stephan Orlovsky, Jul 11 2011 *)
Join[{1}, NestList[5#&, 6, 30]] (* Harvey P. Dale, Dec 31 2013 *)
CoefficientList[Series[(1+x)/(1-5x), {x, 0, 30}], x] (* Michael De Vlieger, Dec 10 2016 *)
PROG
(PARI) Vec((1+x)/(1-5*x)+O(x^30)) \\ Charles R Greathouse IV, Nov 20 2012
(Magma) [1] cat [6*5^(n-1): n in [1..30]]; // G. C. Greubel, Sep 24 2019
(Sage) [1]+[6*5^(n-1) for n in (1..30)] # G. C. Greubel, Sep 24 2019
(GAP) Concatenation([1], List([1..30], n-> 6*5^(n-1) )); # G. C. Greubel, Sep 24 2019
KEYWORD
nonn,easy,nice,walk
EXTENSIONS
Definition corrected by Frans J. Faase, Feb 07 2009
Edited by N. J. A. Sloane, Dec 04 2009
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy