OFFSET
1,1
COMMENTS
Partial sums: A088462. - Reinhard Zumkeller, Dec 05 2009
Write w(n) = a(n) for n >= 1. Each w(n) is generated by w(i) for exactly one i <= n; let g(n) = i. Each w(i) generates a single 1, in a word (10 or 100) that starts with 1. Therefore, g(n) is the number of 1s among w(1), ..., w(n), so that g = A088462. That is, this sequence is generated by its partial sums. - Clark Kimberling, May 25 2011
LINKS
T. D. Noe, Table of n, a(n) for n = 1..8119
Wieb Bosma, Michel Dekking, and Wolfgang Steiner, A remarkable sequence related to Pi and sqrt(2), arXiv:1710.01498 [math.NT], 2017.
Wieb Bosma, Michel Dekking, and Wolfgang Steiner, A remarkable sequence related to Pi and sqrt(2), Integers, Electronic Journal of Combinatorial Number Theory 18A (2018), #A4.
N. G. de Bruijn, Sequences of zeros and ones generated by special production rules, Nederl. Akad. Wetensch. Indag. Math. 43 (1981), no. 1, 27-37. Reprinted in Physics of Quasicrystals, ed. P. J. Steinhardt et al., p. 664.
C. J. Glasby, S. P. Glasby, and F. Pleijel, Worms by number, Proc. Roy. Soc. B, Proc. Biol. Sci. 275 (1647) (2008) 2071-2076.
N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence).
FORMULA
a(n) = floor(n*(sqrt(2) - 1) + sqrt(1/2)) - floor((n - 1)*(sqrt(2) - 1) + sqrt(1/2)) (from the de Bruijn reference). - Peter J. Taylor, Mar 26 2015
From Jianing Song, Jan 02 2019: (Start)
a(n) = A001030(n) - 1.
MAPLE
P(0):= (1, 0): P(1):= (1, 0, 0):
((P~)@@6)([1]);
# in Maple 12 or earlier, comment the above line and uncomment the following:
# (curry(map, P)@@6)([1]); # Robert Israel, Mar 26 2015
MATHEMATICA
Nest[ Flatten[# /. {0 -> {1, 0}, 1 -> {1, 0, 0}}] &, {1}, 5] (* Robert G. Wilson v, May 25 2011 *)
SubstitutionSystem[{0->{1, 0}, 1->{1, 0, 0}}, {1}, 5]//Flatten (* Harvey P. Dale, Nov 20 2021 *)
PROG
(Magma) [Floor(n*(Sqrt(2) - 1) + Sqrt(1/2)) - Floor((n - 1)*(Sqrt(2) - 1) + Sqrt(1/2)): n in [0..100]]; // Vincenzo Librandi, Mar 27 2015
(Python)
from math import isqrt
def A004641(n): return [1, 0, 0, 1, 0, 1, 0, 1][n-1] if n < 9 else -1-isqrt(m:=(n-9)*(n-9)<<1)+isqrt(m+(n-9<<2)+2) # Chai Wah Wu, Aug 25 2022
CROSSREFS
Characteristic function of A086377.
Cf. A081477.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021
KEYWORD
nonn,nice,easy
AUTHOR
STATUS
approved