login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A008475
If n = Product (p_j^k_j) then a(n) = Sum (p_j^k_j) (a(1) = 0 by convention).
58
0, 2, 3, 4, 5, 5, 7, 8, 9, 7, 11, 7, 13, 9, 8, 16, 17, 11, 19, 9, 10, 13, 23, 11, 25, 15, 27, 11, 29, 10, 31, 32, 14, 19, 12, 13, 37, 21, 16, 13, 41, 12, 43, 15, 14, 25, 47, 19, 49, 27, 20, 17, 53, 29, 16, 15, 22, 31, 59, 12, 61, 33, 16, 64, 18, 16, 67, 21, 26, 14, 71, 17, 73
OFFSET
1,2
COMMENTS
For n>1, a(n) is the minimal number m such that the symmetric group S_m has an element of order n. - Ahmed Fares (ahmedfares(AT)my-deja.com), Jun 26 2001
If gcd(u,w) = 1, then a(u*w) = a(u) + a(w); behaves like logarithm; compare A001414 or A056239. - Labos Elemer, Mar 31 2003
REFERENCES
F. J. Budden, The Fascination of Groups, Cambridge, 1972; pp. 322, 573.
József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter IV, p. 147.
T. Z. Xuan, On some sums of large additive number theoretic functions (in Chinese), Journal of Beijing normal university, No. 2 (1984), pp. 11-18.
LINKS
Daniel Forgues, Table of n, a(n) for n = 1..100000 (first 10000 terms from T. D. Noe)
John Bamberg, Grant Cairns and Devin Kilminster, The crystallographic restriction, permutations and Goldbach's conjecture, Amer. Math. Monthly, Vol. 110, No. 3 (March 2003), pp. 202-209.
Roger B. Eggleton and William P. Galvin, Upper Bounds on the Sum of Principal Divisors of an Integer, Mathematics Magazine, Vol. 77, No. 3 (Jun., 2004), pp. 190-200.
FORMULA
Additive with a(p^e) = p^e.
a(A000961(n)) = A000961(n); a(A005117(n)) = A001414(A005117(n)).
a(n) = Sum_{k=1..A001221(n)} A027748(n,k) ^ A124010(n,k) for n>1. - Reinhard Zumkeller, Oct 10 2011
a(n) = Sum_{k=1..A001221(n)} A141809(n,k) for n > 1. - Reinhard Zumkeller, Jan 29 2013
Sum_{k=1..n} a(k) ~ (Pi^2/12)* n^2/log(n) + O(n^2/log(n)^2) (Xuan, 1984). - Amiram Eldar, Mar 04 2021
EXAMPLE
a(180) = a(2^2 * 3^2 * 5) = 2^2 + 3^2 + 5 = 18.
MAPLE
A008475 := proc(n) local e, j; e := ifactors(n)[2]:
add(e[j][1]^e[j][2], j=1..nops(e)) end:
seq(A008475(n), n=1..60); # Peter Luschny, Jan 17 2010
MATHEMATICA
f[n_] := Plus @@ Power @@@ FactorInteger@ n; f[1] = 0; Array[f, 73]
PROG
(PARI) for(n=1, 100, print1(sum(i=1, omega(n), component(component(factor(n), 1), i)^component(component(factor(n), 2), i)), ", "))
(PARI) a(n)=local(t); if(n<1, 0, t=factor(n); sum(k=1, matsize(t)[1], t[k, 1]^t[k, 2])) /* Michael Somos, Oct 20 2004 */
(PARI) A008475(n) = { my(f=factor(n)); vecsum(vector(#f~, i, f[i, 1]^f[i, 2])); }; \\ Antti Karttunen, Nov 17 2017
(Haskell)
a008475 1 = 0
a008475 n = sum $ a141809_row n
-- Reinhard Zumkeller, Jan 29 2013, Oct 10 2011
(Python)
from sympy import factorint
def a(n):
f=factorint(n)
return 0 if n==1 else sum([i**f[i] for i in f]) # Indranil Ghosh, May 20 2017
KEYWORD
nonn,nice
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy