login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A008845
Numbers k such that k+1 and k/2+1 are squares.
1
0, 48, 1680, 57120, 1940448, 65918160, 2239277040, 76069501248, 2584123765440, 87784138523760, 2982076586042448, 101302819786919520, 3441313796169221280, 116903366249966604048, 3971273138702695316400, 134906383349641674153600, 4582845760749114225906048
OFFSET
0,2
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 256.
LINKS
Henry Ernest Dudeney, Amusements in Mathematics, 1917. See problem 114, "Curious numbers".
FORMULA
a(n) = 2*(A008844(n)-1) = 16*A075528(n) = 48*A029546(n). - corrected by Sean A. Irvine, Apr 07 2018
a(0)=0, a(1)=48, a(2)=1680, a(n) = 35*a(n-1) - 35*a(n-2) + a(n-3). - Harvey P. Dale, May 24 2014
From Colin Barker, Mar 02 2016: (Start)
a(n) = (-6+(3-2*sqrt(2))*(17+12*sqrt(2))^(-n)+(3+2*sqrt(2))*(17+12*sqrt(2))^n)/4.
G.f.: 48*x / ((1-x)*(1-34*x+x^2)).
(End)
a(n) = 34*a(n-1) - a(n-2) + 48. - Vincenzo Librandi, Mar 03 2016
EXAMPLE
48+1 = 49 = 7^2 and 48/2+1 = 24+1 = 25 = 5^2.
MAPLE
seq(coeff(series(48*x/((1-x)*(1-34*x+x^2)), x, n+1), x, n), n = 0..20); # G. C. Greubel, Sep 13 2019
MATHEMATICA
LinearRecurrence[{35, -35, 1}, {0, 48, 1680}, 20] (* Harvey P. Dale, May 24 2014 *)
PROG
(PARI) concat(0, Vec(48*x/((1-x)*(1-34*x+x^2)) + O(x^20))) \\ Colin Barker, Mar 02 2016
(Magma) I:=[0, 48]; [n le 2 select I[n] else 34*Self(n-1) - Self(n-2)+48: n in [1..20]]; // Vincenzo Librandi, Mar 03 2016
(Sage)
def A008845_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(48*x/((1-x)*(1-34*x+x^2))).list()
A008845_list(20) # G. C. Greubel, Sep 13 2019
(GAP) a:=[0, 48, 1680];; for n in [4..20] do a[n]:=35*a[n-1]-35*a[n-2] +a[n-3]; od; a; # G. C. Greubel, Sep 13 2019
CROSSREFS
Sequence in context: A266160 A004386 A076003 * A273627 A355998 A288455
KEYWORD
nonn,easy
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy