login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A031439
a(0) = 1, a(n) is the greatest prime factor of a(n-1)^2+1 for n > 0.
10
1, 2, 5, 13, 17, 29, 421, 401, 53, 281, 3037, 70949, 1713329, 1467748131121, 37142837524296348426149, 101591133424866642486477019709, 1650979973845742266714536305651329, 78343914631785958284737, 4029445531112797145738746391569, 350080544438648120162733678636001, 26208090024628793745288451837610346882122253572537, 4717815978577117335515270825550279551117660519482308365269206484133871485221
OFFSET
0,2
COMMENTS
Does this sequence grow indefinitely, or does it cycle? - Franklin T. Adams-Watters, Oct 02 2006
All a(n) except a(0) = 1 belong to A014442(n) = {2, 5, 5, 17, 13, 37, 5, 13, 41, 101, ...} Largest prime factor of n^2 + 1. All a(n) except a(0) = 1 belong to A002313(n) = {2, 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, ...} Primes congruent to 1 or 2 modulo 4; or, primes of form x^2+y^2; or, -1 is a square mod p. All a(n) except a(0) = 1 and a(1) = 2 are the Pythagorean primes A002144(n) = {5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, ...} Primes of form 4n+1. - Alexander Adamchuk, Nov 05 2006
Essentially the same as A072268; A072268(n) = A031439(n-1)^2 + 1. - Charles R Greathouse IV, May 08 2009
EXAMPLE
a(16)=A006530(a(15)^2+1)=
A006530(101591133424866642486477019709^2+1)=
A006530(10320758390549056348725939119133160378521185060950774444682)=
A006530(2*29*23201*4645528280970018601*1650979973845742266714536305651329)=
1650979973845742266714536305651329, factorization of A006530(a(15)^2+1) by Dario A. Alpern's program (see link).
MATHEMATICA
gpf[n_] := FactorInteger[n][[-1, 1]]; a[0] = 1; a[n_] := a[n] = gpf[a[n - 1]^2 + 1]; Table[an = a[n]; Print[an]; an, {n, 0, 21}] (* Jean-François Alcover, Nov 04 2011 *)
NestList[FactorInteger[#^2+1][[-1, 1]]&, 1, 21] (* Harvey P. Dale, Jul 04 2013 *)
PROG
(PARI) gpf(n)=local(pf); pf=factor(n); pf[matsize(pf)[1], 1] vector(20, i, r=if(i==1, 1, gpf(r^2+1)))
CROSSREFS
Cf. A002144 - Pythagorean primes: primes of form 4n+1; A002313 - Primes congruent to 1 or 2 modulo 4; A014442 - Largest prime factor of n^2 + 1.
Sequence in context: A068486 A099332 A279687 * A074856 A087952 A124255
KEYWORD
nonn,nice
EXTENSIONS
One more term from Vladeta Jovovic, Nov 26 2001
a(16) from Reinhard Zumkeller, Aug 07 2004
a(17)-a(21) from Richard FitzHugh (fitzhughrichard(AT)hotmail.com), Aug 12 2004
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy