login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A035005
Number of possible queen moves on an n X n chessboard.
9
0, 12, 56, 152, 320, 580, 952, 1456, 2112, 2940, 3960, 5192, 6656, 8372, 10360, 12640, 15232, 18156, 21432, 25080, 29120, 33572, 38456, 43792, 49600, 55900, 62712, 70056, 77952, 86420, 95480, 105152, 115456, 126412, 138040, 150360
OFFSET
1,2
COMMENTS
The number of (2 to n) digit sequences that can be found reading in any orientation, including diagonals, in an (n X n) grid. - Paul Cleary, Aug 12 2005
Obviously A035005(n) = A002492(n-1) + A035006 (n) since Queen = Bishop + Rook. - Johannes W. Meijer, Feb 04 2010
LINKS
Milan Janjic and Boris Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From N. J. A. Sloane, Feb 13 2013
FORMULA
a(n) = (n-1)*2*n^2 + (4*n^3-6*n^2+2*n)/3.
a(n) = 4 * A162147(n-1). - Johannes W. Meijer, Feb 04 2010
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=0, a(1)=12, a(2)=56, a(3)=152. - Harvey P. Dale, Aug 24 2011
From Colin Barker, Mar 11 2012: (Start)
a(n) = 2*n*(1-6*n+5*n^2)/3.
G.f.: 4*x^2*(3+2*x)/(1-x)^4. (End)
E.g.f.: 2*exp(x)*x^2*(9 + 5*x)/3. - Stefano Spezia, Jul 31 2022
EXAMPLE
3 X 3 board: queen has 8*6 moves and 1*8 moves, so a(3)=56.
MATHEMATICA
Table[(n-1)2n^2+(4n^3-6n^2+2n)/3, {n, 40}] (* or *) LinearRecurrence[ {4, -6, 4, -1}, {0, 12, 56, 152}, 40] (* Harvey P. Dale, Aug 24 2011 *)
PROG
(Magma) [(n-1)*2*n^2 + (4*n^3-6*n^2+2*n)/3: n in [1..40]]; // Vincenzo Librandi, Jun 16 2011
CROSSREFS
Cf. A033586 (King), A035006 (Rook), A035008 (Knight), A002492 (Bishop) and A049450 (Pawn).
Cf. A162147.
Sequence in context: A340517 A104188 A069552 * A001386 A046998 A212507
KEYWORD
nonn,easy,nice
AUTHOR
Ulrich Schimke (ulrschimke(AT)aol.com)
EXTENSIONS
More terms from Erich Friedman
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy