login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A067550
a(n) = (n-1)!(n+2)!/(3*2^n).
12
1, 2, 10, 90, 1260, 25200, 680400, 23814000, 1047816000, 56582064000, 3677834160000, 283193230320000, 25487390728800000, 2650688635795200000, 315431947659628800000, 42583312934049888000000, 6472663565975582976000000, 1100352806215849105920000000
OFFSET
1,2
COMMENTS
Determinant of n X n matrix whose diagonal are the first n triangular numbers and all other elements are 1's.
LINKS
FORMULA
a(n+1)/a(n) = A000096(n) = n(n+3)/2. - Alexander Adamchuk, May 20 2006
From Amiram Eldar, Feb 02 2023: (Start)
Sum_{n>=1} 1/a(n) = 3*BesselI(3, 2*sqrt(2))/sqrt(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*BesselJ(3, 2*sqrt(2))/sqrt(2). (End)
EXAMPLE
The determinant begins:
1 1 1 1 1 1 1 ...
1 3 1 1 1 1 1 ...
1 1 6 1 1 1 1 ...
1 1 1 10 1 1 1 ...
1 1 1 1 15 1 1 ...
1 1 1 1 1 21 1 ...
MAPLE
d:=(i, j)->`if`(i<>j, 1, i*(i+1)/2):
seq(LinearAlgebra[Determinant](Matrix(n, d)), n=1..20); # Muniru A Asiru, Mar 05 2018
MATHEMATICA
Table[ Det[ DiagonalMatrix[ Table[ i(i + 1)/2 - 1, {i, 1, n} ] ] + 1 ], {n, 1, 20} ]
Table[(n-1)!(n+2)!/3/2^n, {n, 1, 20}] (* Alexander Adamchuk, May 20 2006 *)
PROG
(GAP) A067550:=List([1..20], n->Factorial(n-1)*Factorial(n+2)/(3*2^n)); # Muniru A Asiru, Mar 05 2018
(PARI) a(n) = (n-1)!*(n+2)!/(3*2^n); \\ Altug Alkan, Mar 05 2018
CROSSREFS
Cf. A000096.
Sequence in context: A277403 A179423 A320962 * A086587 A082472 A095937
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Jan 28 2002
EXTENSIONS
a(18) from Muniru A Asiru, Mar 05 2018
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy