login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A077249
Bisection (odd part) of Chebyshev sequence with Diophantine property.
6
2, 21, 208, 2059, 20382, 201761, 1997228, 19770519, 195707962, 1937309101, 19177383048, 189836521379, 1879187830742, 18602041786041, 184141230029668, 1822810258510639, 18043961355076722, 178616803292256581, 1768124071567489088, 17502623912382634299
OFFSET
0,1
COMMENTS
-24*a(n)^2 + b(n)^2 = 25, with the companion sequence b(n) = A077250(n).
The even part is A077251(n) with Diophantine companion A077409(n).
FORMULA
a(n) = 10*a(n-1)- a(n-2), a(-1) := -1, a(0)=2.
a(n) = 2*S(n, 10)+S(n-1, 10), with S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(n, 10)= A004189(n+1).
G.f.: (2+x)/(1-10*x+x^2).
EXAMPLE
24*a(1)^2 + 25 = 24*21^2+25 = 10609 = 103^2 = A077250(1)^2.
MATHEMATICA
CoefficientList[Series[(z + 2)/(z^2 - 10 z + 1), {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 11 2011 *)
LinearRecurrence[{10, -1}, {2, 21}, 40] (* Harvey P. Dale, Apr 08 2012 *)
PROG
(PARI) a(n)=if(n<0, 0, subst(-7*poltchebi(n)+11*poltchebi(n+1), x, 5)/24)
(PARI) a(n)=2*polchebyshev(n, 2, 5)+polchebyshev(n-1, 2, 5) \\ Charles R Greathouse IV, Jun 11 2011
(PARI) Vec((2+x)/(1-10*x+x^2) + O(x^30)) \\ Colin Barker, Jun 15 2015
CROSSREFS
Sequence in context: A365061 A110253 A185634 * A068070 A085953 A225614
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 08 2002
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy