login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A077251
Bisection (even part) of Chebyshev sequence with Diophantine property.
6
1, 12, 119, 1178, 11661, 115432, 1142659, 11311158, 111968921, 1108378052, 10971811599, 108609737938, 1075125567781, 10642645939872, 105351333830939, 1042870692369518, 10323355589864241, 102190685206272892, 1011583496472864679, 10013644279522373898
OFFSET
0,2
COMMENTS
b(n)^2 - 24*a(n)^2 = 25, with the companion sequence b(n) = A077409(n).
The odd part is A077249(n) with Diophantine companion A077250(n).
FORMULA
a(n) = 10*a(n-1)- a(n-2), a(-1)=-2, a(0)=1.
a(n) = S(n, 10)+2*S(n-1, 10), with S(n, x) = U(n, x/2), Chebyshev's polynomials of the 2nd kind, A049310. S(n, 10)= A004189(n+1).
a(n) = sqrt((A077409(n)^2 - 25)/24).
G.f.: (1+2*x)/(1-10*x+x^2).
EXAMPLE
24*a(1)^2 + 25 = 24*12^2 + 25 = 3481 = 59^2 = A077409(1)^2.
MATHEMATICA
CoefficientList[Series[(2 z + 1)/(z^2 - 10 z + 1), {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 11 2011 *)
PROG
(PARI) Vec((1+2*x)/(1-10*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Jun 11 2011
(PARI) a(n)=([0, 1; -1, 10]^n*[1; 12])[1, 1] \\ Charles R Greathouse IV, Jun 15 2015
CROSSREFS
Sequence in context: A025132 A001712 A285232 * A289542 A075622 A153054
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 08 2002
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy