login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A079667
a(n) = (1/2) * Sum_{d divides n} abs(n/d-d).
11
0, 1, 2, 3, 4, 6, 6, 9, 8, 12, 10, 16, 12, 18, 16, 21, 16, 27, 18, 28, 24, 30, 22, 40, 24, 36, 32, 42, 28, 50, 30, 49, 40, 48, 36, 65, 36, 54, 48, 66, 40, 72, 42, 70, 60, 66, 46, 92, 48, 77, 64, 84, 52, 96, 60, 92, 72, 84, 58, 126, 60, 90, 82, 105, 72, 120, 66, 112, 88, 114, 70
OFFSET
1,3
COMMENTS
Also, Sum_{i|n, sqrt(n)<i<=n} i - Sum_{i|n, 1<=i<sqrt(n)} i.
REFERENCES
H. J. S. Smith, Report on the Theory of Numbers, reprinted in Vol. 1 of his Collected Math. Papers, Chelsea, NY, 1979, see p. 323.
LINKS
FORMULA
a(n) = A070038(n) - A066839(n).
G.f.: Sum_{k>0} x^(k^2+k)/(1-x^k)^2 . - Michael Somos, Nov 19 2005
MATHEMATICA
Table[DivisorSum[n, Abs[n/# - #] &, # <= Sqrt[n] &], {n, 71}] (* Michael De Vlieger, Mar 17 2021 *)
PROG
(PARI) a(n)=if(n<2, 0, sumdiv(n, d, abs(n/d-d))/2) /* Michael Somos, Nov 19 2005 */
(SageMath)
def A079667(n): return sum(n//d - d for d in divisors(n) if d*d <= n)
print([A079667(n) for n in range(1, 72)]) # Peter Luschny, Jan 01 2024
CROSSREFS
Sequence in context: A094871 A157450 A195013 * A073061 A300526 A006874
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Jan 25 2003
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy