login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A091333
Number of 1's required to build n using +, -, *, and parentheses.
18
1, 2, 3, 4, 5, 5, 6, 6, 6, 7, 8, 7, 8, 8, 8, 8, 9, 8, 9, 9, 9, 10, 10, 9, 10, 10, 9, 10, 11, 10, 11, 10, 11, 11, 11, 10, 11, 11, 11, 11, 12, 11, 12, 12, 11, 12, 12, 11, 12, 12, 12, 12, 12, 11, 12, 12, 12, 13, 13, 12, 13, 13, 12, 12, 13, 13, 14, 13, 13, 13, 13, 12, 13, 13, 13, 13, 14
OFFSET
1,2
COMMENTS
Consider an alternate complexity measure b(n) which gives the minimum number of 1's necessary to build n using +, -, *, and / (where this additional operation is strict integer division, defined only for n/d where d|n). It turns out that b(n) coincides with a(n) for all n up to 50221174, see A348069. - Glen Whitney, Sep 23 2021
In respect of the previous comment: when creating A362471, where repunits are allowed, we found a difference if we allowed n/d with noninteger (intermediate) results. So, see also A362626. - Peter Munn, Apr 29 2023
LINKS
Juris Cernenoks, Janis Iraids, Martins Opmanis, Rihards Opmanis and Karlis Podnieks, Integer Complexity: Experimental and Analytical Results II, arXiv:1409.0446 [math.NT], 2014.
J. Iraids, K. Balodis, J. Cernenoks, M. Opmanis, R. Opmanis and K. Podnieks, Integer Complexity: Experimental and Analytical Results. arXiv preprint arXiv:1203.6462 [math.NT], 2012. - From N. J. A. Sloane, Sep 22 2012
EXAMPLE
A091333(23) = 10 because 23 = (1+1+1+1) * (1+1+1) * (1+1) - 1. (Note that 23 is also the smallest index at which A091333 differs from A005245.)
PROG
(Python)
from functools import cache
@cache
def f(m):
if m == 0: return set()
if m == 1: return {1}
out = set()
for j in range(1, m//2+1):
for x in f(j):
for y in f(m-j):
out.update([x + y, x * y])
if x != y: out.add(abs(x-y))
return out
def aupton(terms):
tocover, alst, n = set(range(1, terms+1)), [0 for i in range(terms)], 1
while len(tocover) > 0:
for k in f(n) - f(n-1):
if k <= terms:
alst[k-1] = n
tocover.discard(k)
n += 1
return alst
print(aupton(77)) # Michael S. Branicky, Sep 28 2021
CROSSREFS
Cf. A005245 (variant using + and *), A025280 (using +, *, and ^), A091334 (using +, -, *, and ^), A348089 (using +, -, *, /, and ^), A348262 (using + and ^).
Sequence in context: A200311 A007600 A195872 * A293771 A005245 A061373
KEYWORD
nonn
AUTHOR
Jens Voß, Dec 30 2003
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy