login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A095932
Number of walks of length 2n+1 between two nodes at distance 3 in the cycle graph C_10.
1
1, 5, 22, 93, 385, 1574, 6385, 25773, 103702, 416405, 1669801, 6690150, 26789257, 107232053, 429124630, 1717012749, 6869397265, 27481113638, 109933682017, 439758885885, 1759098789526, 7036560738245, 28146676447417, 112587840692838, 450354333986425
OFFSET
1,2
COMMENTS
In general 2^n/m*Sum_{r=0..m-1} cos(2Pi*k*r/m)*cos(2Pi*r/m)^n is the number of walks of length n between two nodes at distance k in the cycle graph C_m. Here we have m=10 and k=3.
FORMULA
a(n) = 4^n/5*Sum_{r=0..9} cos(3*Pi*r/5)*cos(Pi*r/5)^(2*n+1).
a(n) = 7*a(n-1)-13*a(n-2)+4*a(n-3).
G.f.: (-x+2*x^2)/((-1+4*x)*(1-3*x+x^2)).
a(n) = (2^(1+2*n)-(1/2*(3-sqrt(5)))^n-(1/2*(3+sqrt(5)))^n)/5. - Colin Barker, Apr 27 2016
E.g.f.: (2*exp(4*x) - exp(((3 - sqrt(5))*x)/2) - exp(((3 + sqrt(5))*x)/2))/5. - Ilya Gutkovskiy, Apr 27 2016
From Greg Dresden, Jan 19 2023: (Start)
a(n) = Sum_{k>0} binomial(2*n,n+k)-binomial(2*n,n+5k).
5*a(n) = 2*4^n - Lucas(2*n). (End)
MATHEMATICA
f[n_]:=FullSimplify[TrigToExp[(4^n/5)Sum[Cos[3Pi*k/5]Cos[Pi*k/5]^(2n+1), {k, 0, 9}]]]; Table[f[n], {n, 1, 35}]
PROG
(PARI) Vec((-x+2*x^2)/((-1+4*x)*(1-3*x+x^2)) + O(x^50)) \\ Colin Barker, Apr 27 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Herbert Kociemba, Jul 12 2004
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy