login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A095933
Number of walks of length 2n+1 between two nodes at distance 5 in the cycle graph C_10.
0
2, 14, 72, 330, 1430, 6008, 24786, 101118, 409640, 1652090, 6643782, 26667864, 106914242, 428292590, 1714834440, 6863694378, 27466183286, 109894593848, 439656551730, 1758830875230, 7035859329512, 28144840135514
OFFSET
2,1
COMMENTS
In general Cos(2Pi*k*r/m)Cos(2Pi*r/m)^n is the number of walks of length n between two nodes at distance k in the cycle graph C_m. Here we have m=10 and k=5. Herbert
FORMULA
a(n) = 4^n/5*Sum_{r=0..9} (-1)^r*Cos(Pi*r/5)^(2n+1).
a(n) = 7a(n-1)-13a(n-2)+4a(n-3).
G.f.: -2x^2/((-1+4x)(1-3x+x^2)).
a(n) = (8/5)*4^n+2/5*(sqrt(5)-2)*2^n*(3+sqrt(5))^(-n)-2/5*(sqrt(5)+2)*2^n*(3-sqrt(5))^(-n). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 24 2008
MAPLE
f:= gfun:-rectoproc({- a(n) + 7*a(n-1) - 13*a(n-2) + 4*a(n-3), a(2)=2, a(3)=14, a(4)=72}, a(n), remember): map(f, [$2..23]); # Georg Fischer, Jul 16 2020
MATHEMATICA
f[n_]:=FullSimplify[TrigToExp[(4^n/5)Sum[(-1)^k*Cos[Pi*k/5]^(2n+1), {k, 0, 9}]]]; Table[f[n], {n, 1, 35}]
CROSSREFS
Sequence in context: A171012 A094583 A002058 * A263218 A189305 A043011
KEYWORD
nonn
AUTHOR
Herbert Kociemba, Jul 12 2004
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy