login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115361
Inverse of matrix (1,x)-(x,x^2) (expressed in Riordan array notation).
23
1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1
OFFSET
0,1
COMMENTS
Row sums are the 'ruler function' A001511. Columns are stretched Fredholm-Rueppel sequences (A036987). Inverse is A115359.
Eigensequence of triangle A115361 = A018819 starting with offset 1: (1, 2, 2, 4, 4, 6, 6, 10, 10, 14, 14, 20, 20, ...). - Gary W. Adamson, Nov 21 2009
From Gary W. Adamson, Nov 27 2009: (Start)
A115361 * [1, 2, 3, ...] = A129527 = (1, 3, 3, 7, 5, 9, 7, 15, ...).
(A115361)^(-1) * [1, 2, 3, ...] = A115359 * [1, 2, 3, ...] = A026741 starting /Q (1, 1, 3, 2, 5, 3, 7, 4, 9, ...). (End)
This is the lower-left triangular part of the inverse of the infinite matrix A_{ij} = [i=j] - [i=2j], its upper-right part (above / right to the diagonal) being zero. The n-th row has 1 in column n/2^i, i = 0, 1, ... as long as this is an integer. - M. F. Hasler, May 13 2018
FORMULA
Number triangle whose k-th column has g.f. x^k*sum{j>=0} x^((2^j-1)*(k+1)).
T(n,k) = A209229((n+1)/(k+1)) for k+1 divides n+1, T(n,k) = 0 otherwise. - Andrew Howroyd, Aug 05 2018
EXAMPLE
Triangle begins:
1;
1,1;
0,0,1;
1,1,0,1;
0,0,0,0,1;
0,0,1,0,0,1;
0,0,0,0,0,0,1;
1,1,0,1,0,0,0,1;
0,0,0,0,0,0,0,0,1;
0,0,0,0,1,0,0,0,0,1;
0,0,0,0,0,0,0,0,0,0,1;
MAPLE
A115361 := proc(n, k)
for j from 0 do
if k+(2*j-1)*(k+1) > n then
return 0 ;
elif k+(2^j-1)*(k+1) = n then
return 1 ;
end if;
end do;
end proc: # R. J. Mathar, Jul 14 2012
MATHEMATICA
(*recurrence*)
Clear[t]
t[1, 1] = 1;
t[n_, k_] :=
t[n, k] =
If[k == 1, Sum[t[n, k + i], {i, 1, 2 - 1}],
If[Mod[n, k] == 0, t[n/k, 1], 0], 0]
Flatten[Table[Table[t[n, k], {k, 1, n}], {n, 14}]] (* Mats Granvik, Jun 26 2014 *)
PROG
(PARI) tabl(nn) = {T = matrix(nn, nn, n, k, n--; k--; if ((n==k), 1, if (n==2*k+1, -1, 0))); Ti = T^(-1); for (n=1, nn, for (k=1, n, print1(Ti[n, k], ", "); ); print(); ); } \\ Michel Marcus, Mar 28 2015
(PARI) A115361_row(n, v=vector(n))={until(bittest(n, 0)||!n\=2, v[n]=1); v} \\ Yields the n-th row (of length n). - M. F. Hasler, May 13 2018
(PARI) T(n, k)={if(n%k, 0, my(e=valuation(n/k, 2)); n/k==1<<e)}
for(n=1, 10, for(k=1, n, print1(T(n, k), ", ")); print) \\ Andrew Howroyd, Aug 03 2018
CROSSREFS
Cf. A016741, A018819, A129527. - Gary W. Adamson, Nov 21 2009
Sequence in context: A014039 A016410 A230412 * A115358 A325898 A117904
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Jan 21 2006
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy