login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116380
Number of quaternary rooted identity (distinct subtrees) trees with n nodes.
3
1, 1, 1, 2, 3, 6, 12, 25, 52, 113, 247, 548, 1226, 2770, 6298, 14419, 33183, 76760, 178327, 415960, 973693, 2286781, 5386573, 12723097, 30127465, 71506140, 170081575, 405359177, 967899981, 2315131955, 5546597838, 13308818691, 31979667219, 76947325788
OFFSET
1,4
COMMENTS
It is not known if these trees have the asymptotic form C rho^{-n} n^{-3/2}, whereas the identity binary trees, A063895, do, see the Jason P. Bell et al. reference.
LINKS
Jason P. Bell, Stanley N. Burris and Karen A. Yeats, Counting Rooted Trees: The Universal Law t(n) ~ C rho^{-n} n^{-3/2}, arXiv:math/0512432 [math.CO], 2005-2006.
FORMULA
G.f. satisfies: A(x) = x(1 + A(x) + A(x)^2/2-A(x^2)/2 + A(x)^3/6-A(x)A(x^2)/2+A(x^3)/3 + A(x)^4/24-A(x)^2A(x^2)/4+A(x)A(x^3)/3+A(x^2)^2/8-A(x^4)/4), that is A(x) = x(1+Set_{<=4}(A)(x)).
MAPLE
A:= proc(n) option remember; local T; if n<=1 then x else T:= unapply(A(n-1), x); convert(series(x* (1+T(x)+ T(x)^2/2- T(x^2)/2+ T(x)^3/6- T(x)*T(x^2)/2+ T(x^3)/3+ T(x)^4/24- T(x)^2* T(x^2)/4+ T(x)* T(x^3)/3+ T(x^2)^2/8- T(x^4)/4), x, n+1), polynom) fi end: a:= n-> coeff(A(n), x, n): seq(a(n), n=1..40); # Alois P. Heinz, Aug 22 2008
MATHEMATICA
A[n_] := A[n] = If[n <= 1, x, T[y_] = A[n-1] /. x -> y; Normal[Series[y*(1+T[y]+T[y]^2/2-T[y^2]/2+T[y]^3/6-T[y]*T[y^2]/2+T[y^3]/3+T[y]^4/24-T[y]^2*T[y^2]/4+T[y]*T[y^3]/3+T[y^2]^2/8-T[y^4]/4), {y, 0, n+1}]] /. y -> x]; a[n_] := Coefficient[A[n], x, n]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Feb 13 2014, after Maple *)
PROG
(C) #include <ginac/ginac.h> using namespace GiNaC; int main(){ int i, order=40; symbol x("x"); ex T; for (i=0; i<order; i++) T = (x+x*(T + pow(T, 2)/2 - T.subs(x==pow(x, 2))/2 + pow(T, 3)/6 - T*T.subs(x==pow(x, 2))/2 + T.subs(x==pow(x, 3))/3 + pow(T, 4)/24 - pow(T, 2)*T.subs(x==pow(x, 2))/4 + T*T.subs(x==pow(x, 3))/3 + pow(T.subs(x==pow(x, 2)), 2)/8 - T.subs(x==pow(x, 4))/4)).series(x, i+3); for (i=1; i<=order; i++) std::cout << T.coeff(x, i) << ", "; }
CROSSREFS
KEYWORD
nonn
AUTHOR
Karen A. Yeats, Feb 06 2006
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy