login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192805
Constant term in the reduction of the polynomial 1+x+x^2+...+x^n by x^3->x^2+2x+1. See Comments.
1
1, 1, 1, 2, 3, 6, 12, 25, 53, 113, 242, 519, 1114, 2392, 5137, 11033, 23697, 50898, 109323, 234814, 504356, 1083305, 2326829, 4997793, 10734754, 23057167, 49524466, 106373552, 228479649, 490751217, 1054084065, 2264066146, 4862985491
OFFSET
0,4
COMMENTS
For discussions of polynomial reduction, see A192232 and A192744.
FORMULA
a(n)=2*a(n-1)+a(n-2)-a(n-3)-a(n-4).
G.f.: -(1+x)*(2*x-1) / ( (x-1)*(x^3+2*x^2+x-1) ). - R. J. Mathar, May 06 2014
a(n)-a(n-1) = A002478(n-3). - R. J. Mathar, May 06 2014
EXAMPLE
The first five polynomials p(n,x) and their reductions:
p(1,x)=1 -> 1
p(2,x)=x+1 -> x+1
p(3,x)=x^2+x+1 -> x^2+x+1
p(4,x)=x^3+x^2+x+1 -> 2x^2+3x+2
p(5,x)=x^4+x^3+x^2+x+1 -> 5x^2+6*x+3, so that
A192805=(1,1,1,2,3,...), A002478=(0,1,1,3,6,...), A077864=(0,0,1,2,5,...).
MATHEMATICA
q = x^3; s = x^2 + 2 x + 1; z = 40;
p[0, x_] := 1; p[n_, x_] := x^n + p[n - 1, x];
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}] :=
FixedPoint[(s PolynomialQuotient @@ #1 +
PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
(* A192805 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
(* A002478 *)
u3 = Table[Coefficient[Part[t, n], x, 2], {n, 1, z}]
(* A077864 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jul 10 2011
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy