login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126351
Triangle read by rows: matrix product of the Stirling numbers of the second kind with the binomial coefficients.
5
1, 1, 2, 1, 5, 4, 1, 9, 19, 8, 1, 14, 55, 65, 16, 1, 20, 125, 285, 211, 32, 1, 27, 245, 910, 1351, 665, 64, 1, 35, 434, 2380, 5901, 6069, 2059, 128, 1, 44, 714, 5418, 20181, 35574, 26335, 6305, 256, 1, 54, 1110, 11130, 58107, 156660, 204205, 111645, 19171, 512
OFFSET
1,3
COMMENTS
Many well-known integer sequences arise from such a matrix product of combinatorial coefficients. In the present case we have as the first row A000079 = the powers of two = 2^n. As the second row we have A001047 = 3^n - 2^n. As the column sums we have 1,3,10,37,151,674,3263,17007,94828 we have A005493 = number of partitions of [n+1] with a distinguished block.
LINKS
FORMULA
(In Maple notation:) Matrix product B.A of matrix A[i,j]:=binomial(j-1,i-1) with i = 1 to p+1, j = 1 to p+1, p=8 and of matrix B[i,j]:=stirling2(j,i) with i from 1 to d, j from 1 to d, d=9.
T(n,k) = Sum_{i=1..n} C(n-1,i-1) * Stirling2(i, n+1-k). - Alois P. Heinz, Sep 29 2011
EXAMPLE
Matrix begins:
1, 2, 4, 8, 16, 32, 64, 128, 256, ... A000079
0, 1, 5, 19, 65, 211, 665, 2059, 6305, ... A001047
0, 0, 1, 9, 55, 285, 1351, 6069, 26335, ... A016269
0, 0, 0, 1, 14, 125, 910, 5901, 35574, ... A025211
0, 0, 0, 0, 1, 20, 245, 2380, 20181, ...
0, 0, 0, 0, 0, 1, 27, 434, 5418, ...
0, 0, 0, 0, 0, 0, 1, 35, 714, ...
0, 0, 0, 0, 0, 0, 0, 1, 44, ...
0, 0, 0, 0, 0, 0, 0, 0, 1, ...
Triangle begins:
1;
1, 2;
1, 5, 4;
1, 9, 19, 8;
1, 14, 55, 65, 16;
MAPLE
T:= (n, k)-> add(binomial(n-1, i-1) *Stirling2(i, n+1-k), i=1..n):
seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Sep 29 2011
MATHEMATICA
T[n_, k_] := Sum[Binomial[n-1, i-1]*StirlingS2[i, n+1-k], {i, 1, n}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 08 2016, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Thomas Wieder, Dec 29 2006
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy