login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A126354
a(n) = 6*a(n-2) - a(n-4) for n > 4, with a(1)=1, a(2)=0, a(3)=3, a(4)=2.
2
1, 0, 3, 2, 17, 12, 99, 70, 577, 408, 3363, 2378, 19601, 13860, 114243, 80782, 665857, 470832, 3880899, 2744210, 22619537, 15994428, 131836323, 93222358, 768398401, 543339720, 4478554083, 3166815962, 26102926097, 18457556052, 152139002499
OFFSET
1,3
COMMENTS
Each pair of terms {odd=x, even=y} gives a solution to the Pell equation x^2 - 2y^2 = 1. Note that odd/even terms also have odd/even indices. The ratio a(2k-1)/a(2k) tends to sqrt(2). Interrelations between odd and even terms: a(2k+1) = 3a(2k-1) + 4a(2k); e.g., 99 = 3*17 + 4*12, 577 = 3*99 + 4*70; a(2k) = 3a(2k-2) + 2a(2k-3), e.g., 70 = 3*12 + 2*17, 408 = 3*70 + 2*99. Odd terms = A001541, even terms = 2*A001109.
FORMULA
O.g.f.: x*(2*x+1)*(-1+x)^2/((x^2-2*x-1)*(x^2+2*x-1)). - R. J. Mathar, Dec 10 2007
MATHEMATICA
LinearRecurrence[{0, 6, 0, -1}, {1, 0, 3, 2}, 35] (* G. C. Greubel, Mar 16 2019 *)
PROG
(PARI) my(x='x+O('x^35)); Vec(x*(1+2*x)*(1-x)^2/((1-2*x-x^2)*(1+2*x-x^2))) \\ G. C. Greubel, Mar 16 2019
(Magma) I:=[1, 0, 3, 2]; [n le 4 select I[n] else 6*Self(n-2)-Self(n-4): n in [1..35]]; // G. C. Greubel, Mar 16 2019
(Sage) a=(x*(1+2*x)*(1-x)^2/((1-2*x-x^2)*(1+2*x-x^2))).series(x, 35).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Mar 16 2019
(GAP) a:=[1, 0, 3, 2];; for n in [5..35] do a[n]:=6*a[n-2]-a[n-4]; od; a; # G. C. Greubel, Mar 16 2019
CROSSREFS
Sequence in context: A072045 A189731 A342140 * A361084 A158939 A173795
KEYWORD
nonn,easy
AUTHOR
Zak Seidov, Dec 26 2006
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy