login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A130485
a(n) = Sum_{k=0..n} (k mod 7) (Partial sums of A010876).
21
0, 1, 3, 6, 10, 15, 21, 21, 22, 24, 27, 31, 36, 42, 42, 43, 45, 48, 52, 57, 63, 63, 64, 66, 69, 73, 78, 84, 84, 85, 87, 90, 94, 99, 105, 105, 106, 108, 111, 115, 120, 126, 126, 127, 129, 132, 136, 141, 147, 147, 148, 150, 153, 157, 162, 168, 168, 169, 171, 174, 178, 183
OFFSET
0,3
COMMENTS
Let A be the Hessenberg n X n matrix defined by A[1,j] = j mod 7, A[i,i]:=1, A[i,i-1]=-1. Then, for n >= 1, a(n)=det(A). - Milan Janjic, Jan 24 2010
FORMULA
a(n) = 21*floor(n/7) + A010876(n)*(A010876(n) + 1)/2.
G.f.: (Sum_{k=1..6} k*x^k)/((1-x^7)*(1-x)).
G.f.: x*(1 - 7*x^6 + 6*x^7)/((1-x^7)*(1-x)^3).
MAPLE
a:=n->add(chrem( [n, j], [1, 7] ), j=1..n):seq(a(n), n=1..70); # Zerinvary Lajos, Apr 07 2009
MATHEMATICA
LinearRecurrence[{1, 0, 0, 0, 0, 0, 1, -1}, {0, 1, 3, 6, 10, 15, 21, 21}, 70] (* Harvey P. Dale, Jul 30 2017 *)
PROG
(PARI) concat(0, Vec((1-7*x^6+6*x^7)/(1-x^7)/(1-x)^3+O(x^70))) \\ Charles R Greathouse IV, Dec 22 2011
(Magma) I:=[0, 1, 3, 6, 10, 15, 21, 21]; [n le 8 select I[n] else Self(n-1) + Self(n-7) - Self(n-8): n in [1..71]]; // G. C. Greubel, Aug 31 2019
(Sage)
def A130485_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(x*(1-7*x^6+6*x^7)/((1-x^7)*(1-x)^3)).list()
A130485_list(70) # G. C. Greubel, Aug 31 2019
(GAP) a:=[0, 1, 3, 6, 10, 15, 21, 21];; for n in [9..71] do a[n]:=a[n-1]+a[n-7]-a[n-8]; od; a; # G. C. Greubel, Aug 31 2019
KEYWORD
nonn,easy
AUTHOR
Hieronymus Fischer, May 31 2007
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy