login
A181992
n-alternating permutations of length n^2.
2
1, 1, 5, 1513, 60376809, 613498040952501, 2655748106132754540814283, 7350748555338515554166266981278924209, 18155845241010181420704703186769135339279915667193169, 53121946985233865823079732996510797894348260342024814486694637630897821
OFFSET
0,3
COMMENTS
These are the generalized Euler numbers A181985(n, n) and also the André numbers A181937(n, n^2).
MAPLE
A181992 := proc(n) local E, dim, i, k; dim := n*n;
E := array(0..dim, 0..dim); E[0, 0] := 1;
for i from 1 to dim do
if i mod n = 0 then E[i, 0] := 0 ;
for k from i-1 by -1 to 0 do E[k, i-k] := E[k+1, i-k-1] + E[k, i-k-1] od;
else E[0, i] := 0;
for k from 1 by 1 to i do E[k, i-k] := E[k-1, i-k+1] + E[k-1, i-k] od;
fi od;
E[0, dim] end:
seq(A181992(i), i=0..9);
MATHEMATICA
A181985[n_, len_] := Module[{e, dim = n*(len - 1)}, e[0, 0] = 1; For[i = 1, i <= dim, i++, If[Mod[i, n] == 0, e[i, 0] = 0; For[k = i - 1, k >= 0, k--, e[k, i - k] = e[k + 1, i - k - 1] + e[k, i - k - 1]], e[0, i] = 0; For[k = 1, k <= i, k++, e[k, i - k] = e[k - 1, i - k + 1] + e[k - 1, i - k]]]]; Table[e[0, n*k], {k, 0, len - 1}]]; a[n_] := A181985[n, n + 1][[n + 1]]; Table[a[n], {n, 1, 14}] (* Jean-François Alcover, Dec 17 2013, after Maple code in A181985 *)
CROSSREFS
Sequence in context: A317731 A259867 A169620 * A145694 A184970 A184973
KEYWORD
nonn
AUTHOR
Peter Luschny, Apr 05 2012
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Aug 12 2019
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy