login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A195818
Generalized 14-gonal numbers: m*(6*m-5), m = 0,+1,-1,+2,-2,+3,-3,...
44
0, 1, 11, 14, 34, 39, 69, 76, 116, 125, 175, 186, 246, 259, 329, 344, 424, 441, 531, 550, 650, 671, 781, 804, 924, 949, 1079, 1106, 1246, 1275, 1425, 1456, 1616, 1649, 1819, 1854, 2034, 2071, 2261, 2300, 2500, 2541, 2751, 2794, 3014, 3059, 3289
OFFSET
0,3
COMMENTS
Also generalized tetradecagonal numbers or generalized tetrakaidecagonal numbers.
Also A211014 and positive terms of A051866 interleaved. - Omar E. Pol, Aug 04 2012
Exponents in expansion of Product_{n >= 1} (1 + x^(12*n-11))*(1 + x^(12*n-1))*(1 - x^(12*n)) = 1 + x + x^11 + x^14 + x^34 + .... - Peter Bala, Dec 10 2020
FORMULA
a(n) = (3*n*(n+1) + (2*n+1)*(-1)^n - 1)/2. - Vincenzo Librandi, Sep 30 2011
G.f.: -x*(x^2+10*x+1) / ((x-1)^3*(x+1)^2). - Colin Barker, Sep 15 2013
Sum_{n>=1} 1/a(n) = 6/25 + sqrt(3)*Pi/5. - Vaclav Kotesovec, Oct 05 2016
E.g.f.: (x*(3*x + 4)*cosh(x) + (3*x^2 + 8*x - 2)*sinh(x))/2. - Stefano Spezia, Jun 08 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = (5*log(432)-6)/25. - Amiram Eldar, Feb 28 2022
MAPLE
a:= n-> (m-> m*(6*m-5))(ceil(-(n+1)/2)*(-1)^n):
seq(a(n), n=0..46); # Alois P. Heinz, Jun 08 2021
MATHEMATICA
LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 11, 14, 34}, 50] (* Harvey P. Dale, Mar 13 2018 *)
PROG
(Magma) [(3*n*(n+1)+(2*n+1)*(-1)^n-1)/2: n in [0..60]]; // Vincenzo Librandi, Sep 30 2011
(Magma) A195818:=func<n | n*(6*n-5)>; [0] cat [A195818(n*m): m in [1, -1], n in [1..25]];
(PARI) Vec(-x*(x^2+10*x+1)/((x-1)^3*(x+1)^2) + O(x^100)) \\ Colin Barker, Sep 15 2013
CROSSREFS
Partial sums of A195817.
Column 10 of A195152.
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), this sequence (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).
Sequence in context: A043885 A326916 A305010 * A344825 A371072 A371073
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Sep 29 2011
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy