login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A221174
a(0)=-4, a(1)=5; thereafter a(n) = 2*a(n-1) + a(n-2).
7
-4, 5, 6, 17, 40, 97, 234, 565, 1364, 3293, 7950, 19193, 46336, 111865, 270066, 651997, 1574060, 3800117, 9174294, 22148705, 53471704, 129092113, 311655930, 752403973, 1816463876, 4385331725, 10587127326, 25559586377, 61706300080, 148972186537, 359650673154
OFFSET
0,1
COMMENTS
From Greg Dresden, May 08 2023: (Start)
For n >= 3, 2*a(n) is the number of ways to tile this figure of length n-1 with two colors of squares and one color of domino. For n=8, we have here the figure of length n-1=7, and it has 2*a(8) = 2728 different tilings.
._ _
|_|_|_ _ _ _ _
|_|_|_|_|_|_|_|
(End)
LINKS
José L. Ramírez, Gustavo N. Rubiano, and Rodrigo de Castro, A Generalization of the Fibonacci Word Fractal and the Fibonacci Snowflake, arXiv preprint arXiv:1212.1368 [cs.DM], 2012-2014.
FORMULA
a(n) = 13*A000129(n) - 4*A000129(n+1). - R. J. Mathar, Jan 14 2013
G.f.: -(13*x-4) / (x^2+2*x-1). - Colin Barker, Jul 10 2015
a(n) is the numerator of the continued fraction [4, 2, ..., 2, 4] with n-3 2's in the middle. For denominators, see A048654. - Greg Dresden and Tongjia Rao, Sep 02 2021
MATHEMATICA
LinearRecurrence[{2, 1}, {-4, 5}, 50] (* Paolo Xausa, Sep 02 2024 *)
PROG
(Haskell)
a221174 n = a221174_list !! n
a221174_list = -4 : 5 : zipWith (+)
(map (* 2) $ tail a221174_list) a221174_list
-- Reinhard Zumkeller, Jan 04 2013
(PARI) Vec(-(13*x-4)/(x^2+2*x-1) + O(x^50)) \\ Colin Barker, Jul 10 2015
CROSSREFS
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Jan 04 2013
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy