login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A048654
a(n) = 2*a(n-1) + a(n-2); a(0)=1, a(1)=4.
33
1, 4, 9, 22, 53, 128, 309, 746, 1801, 4348, 10497, 25342, 61181, 147704, 356589, 860882, 2078353, 5017588, 12113529, 29244646, 70602821, 170450288, 411503397, 993457082, 2398417561, 5790292204
OFFSET
0,2
COMMENTS
Generalized Pellian with second term equal to 4.
The generalized Pellian with second term equal to s has the terms a(n) = A000129(n)*s + A000129(n-1). The generating function is -(1+s*x-2*x)/(-1+2*x+x^2). - R. J. Mathar, Nov 22 2007
LINKS
Andreas M. Hinz and Paul K. Stockmeyer, Precious Metal Sequences and Sierpinski-Type Graphs, J. Integer Seq., Vol 25 (2022), Article 22.4.8.
A. F. Horadam, Pell Identities, Fib. Quart., Vol. 9, No. 3, 1971, pp. 245-252.
A. F. Horadam, Basic Properties of a Certain Generalized Sequence of Numbers, Fibonacci Quarterly, Vol. 3, No. 3, 1965, pp. 161-176.
A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434.
Tanya Khovanova, Recursive Sequences
FORMULA
a(n) = ((3+sqrt(2))*(1+sqrt(2))^n - (3-sqrt(2))*(1-sqrt(2))^n)/2*sqrt(2).
a(n) = 2*A000129(n+2) - 3*A000129(n+1). - Creighton Dement, Oct 27 2004
G.f.: (1+2*x)/(1-2*x-x^2). - Philippe Deléham, Nov 03 2008
a(n) = binomial transform of 1, 3, 2, 6, 4, 12, ... . - Al Hakanson (hawkuu(AT)gmail.com), Aug 08 2009
E.g.f.: exp(x)*cosh(sqrt(2)*x) + 3*exp(x)*sinh(sqrt(2)*x)/sqrt(2). - Vaclav Kotesovec, Feb 16 2015
a(n) is the denominator of the continued fraction [4, 2, ..., 2, 4] with n-1 2's in the middle. For the numerators, see A221174. - Greg Dresden and Tongjia Rao, Sep 02 2021
a(n) = A001333(n) + A000129(n). - G. C. Greubel, Aug 09 2022
MATHEMATICA
LinearRecurrence[{2, 1}, {1, 4}, 30] (* Harvey P. Dale, Jul 27 2011 *)
PROG
(Haskell)
a048654 n = a048654_list !! n
a048654_list =
1 : 4 : zipWith (+) a048654_list (map (* 2) $ tail a048654_list)
-- Reinhard Zumkeller, Aug 01 2011
(Maxima)
a[0]:1$
a[1]:4$
a[n]:=2*a[n-1]+a[n-2]$
A048654(n):=a[n]$
makelist(A048654(n), n, 0, 30); /* Martin Ettl, Nov 03 2012 */
(PARI) a(n)=(([0, 1; 1, 2]^n)*[1, 4]~)[1] \\ Charles R Greathouse IV, May 18 2015
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!((1+2*x)/(1-2*x-x^2))); // G. C. Greubel, Jul 26 2018
(SageMath) [lucas_number1(n+1, 2, -1) +2*lucas_number1(n, 2, -1) for n in (0..40)] # G. C. Greubel, Aug 09 2022
CROSSREFS
KEYWORD
easy,nice,nonn
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy