login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A230955
Boustrophedon transform of nonprimes.
7
1, 5, 15, 40, 114, 371, 1422, 6334, 32238, 184655, 1175454, 8231308, 62882262, 520416569, 4638303786, 44292536061, 451160065069, 4882696090609, 55951575728713, 676777708544967, 8617001415386120, 115200823068725262, 1613460678695102980, 23624702309844184487
OFFSET
0,2
LINKS
J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (Abstract, pdf, ps).
FORMULA
a(n) = Sum_{k=0..n} A109449(n,k)*A018252(k+1).
MATHEMATICA
cc = Select[Range[max = 40], !PrimeQ[#]&]; t[n_, 0] := cc[[n+1]]; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k]; a[n_] := t[n, n]; Array[a, cc // Length, 0] (* Jean-François Alcover, Feb 12 2016 *)
PROG
(Haskell)
a230955 n = sum $ zipWith (*) (a109449_row n) a018252_list
(Python)
from itertools import accumulate, count, islice
from sympy import composite
def A230955_gen(): # generator of terms
yield 1
blist = (1, )
for i in count(1):
yield (blist := tuple(accumulate(reversed(blist), initial=composite(i))))[-1]
A230955_list = list(islice(A230955_gen(), 40)) # Chai Wah Wu, Jun 12 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Nov 03 2013
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy