login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A243840
Pair deficit of the most nearly equal in size partition of n into two parts using floor rounding of the expectations for n, floor(n/2) and n- floor(n/2), assuming equal likelihood of states defined by the number of two-cycles.
1
0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 3, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 1, 1, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 1, 2, 2, 2, 1, 2, 2, 2
OFFSET
0,12
FORMULA
a(n) = floor(A162970(n)/A000085(n)) - floor(A162970(floor(n/2))/A000085(floor(n/2))) - floor(A162970(n-floor(n/2))/A000085(n-floor(n/2))).
EXAMPLE
Trivially, for n = 0,1 no pairs are possible so a(0) and a(1) are 0.
For n = 2, the expectation, E(n), equals 0.5. So a(2) = floor(E(2)) - floor(E(1)) - floor(E(1)) = 0.
For n = 5 = 2 + 3, E(5) = 20/13, E(2) = 0.5 and E(3) = 0.75 and a(5) = floor(E(5)) - floor(E(2)) - floor(E(3)) = 1.
Interestingly, for n = 8, E(8) = 532/191 and E(4) = 6/5, so a(n) = 2 - 1 - 1 = 0.
CROSSREFS
A162970 provides the numerator for calculating the expected value.
A000085 provides the denominator for calculating the expected value.
Sequence in context: A113193 A239110 A278514 * A117898 A212810 A072344
KEYWORD
nonn
AUTHOR
Rajan Murthy, Jun 12 2014
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy