login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A117898
Number triangle 2^abs(L(C(n,2)/3) - L(C(k,2)/3))*[k<=n] where L(j/p) is the Legendre symbol of j and p.
5
1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1
OFFSET
0,4
COMMENTS
Row sums are A117899. Diagonal sums are A117900. Inverse is A117901. A117898 mod 2 is A117904.
FORMULA
G.f.: (1 +x*(1+y) +x^2*(2+2*y+y^2) +x^3*y(1+2*y) +2*x^4*y^2)/((1-x^3)*(1-x^3*y^3)).
T(n, k) = [k<=n]*2^abs(L(C(n,2)/3) - L(C(k,2)/3)).
EXAMPLE
Triangle begins
1;
1, 1;
2, 2, 1;
1, 1, 2, 1;
1, 1, 2, 1, 1;
2, 2, 1, 2, 2, 1;
1, 1, 2, 1, 1, 2, 1;
1, 1, 2, 1, 1, 2, 1, 1;
2, 2, 1, 2, 2, 1, 2, 2, 1;
1, 1, 2, 1, 1, 2, 1, 1, 2, 1;
1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1;
2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1;
1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1;
MATHEMATICA
Flatten[CoefficientList[CoefficientList[Series[(1 +x(1+y) +x^2(2+2y+y^2) +x^3*y(1 +2y) +2x^4*y^2)/((1-x^3)(1-x^3*y^3)), {x, 0, 15}, {y, 0, 15}], x], y]] (* G. C. Greubel, May 03 2017 *)
T[n_, k_]:= 2^Abs[JacobiSymbol[Binomial[n, 2], 3] - JacobiSymbol[Binomial[k, 2], 3]]; Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Sep 27 2021 *)
PROG
(Sage)
def T(n, k): return 2^abs(kronecker(binomial(n, 2), 3) - kronecker(binomial(k, 2), 3))
flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 27 2021
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Apr 01 2006
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy