login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A258467
Number of partitions of 2n into parts of exactly n sorts which are introduced in ascending order.
4
1, 2, 12, 130, 2216, 52078, 1558219, 56524414, 2406802476, 117575627562, 6478447651345, 397345158550386, 26842747368209994, 1980156804133210116, 158365138356099680582, 13647670818304698139989, 1260732993182758276252088, 124273946254095006307105363
OFFSET
0,2
LINKS
FORMULA
a(n) = A256130(2n,n).
a(n) ~ 2^(2*n-1/2) * n^(n-1/2) / (sqrt(Pi*(1-c)) * exp(n) * c^n * (2-c)^n), where c = -A226775 = -LambertW(-2*exp(-2)) = 0.4063757399599599... . - Vaclav Kotesovec, May 31 2015
a(n) ~ Stirling2(2*n, n) = A007820(n). - Vaclav Kotesovec, Jun 01 2015
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
end:
T:= (n, k)-> add(b(n$2, k-i)*(-1)^i/(i!*(k-i)!), i=0..k):
a:= n-> T(2*n, n):
seq(a(n), n=0..20);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, b[n, i-1, k] + If[i>n, 0, k*b[n-i, i, k]]]]; T[n_, k_] := Sum[b[n, n, k-i]*(-1)^i/(i!*(k-i)!), {i, 0, k}]; a[n_] := T[2n, n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 06 2017, translated from Maple *)
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 30 2015
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy