login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A258816
Decimal expansion of the Dirichlet beta function of 9.
10
9, 9, 9, 9, 4, 9, 6, 8, 4, 1, 8, 7, 2, 2, 0, 0, 8, 9, 8, 2, 1, 3, 5, 8, 8, 7, 3, 2, 9, 3, 8, 4, 7, 5, 2, 7, 3, 7, 2, 7, 4, 7, 9, 9, 6, 9, 1, 7, 9, 6, 1, 6, 0, 1, 2, 2, 3, 1, 6, 2, 7, 2, 3, 0, 8, 2, 9, 7, 8, 6, 5, 1, 3, 7, 9, 0, 4, 8, 5, 6, 3, 8, 8, 6, 1, 7, 1, 3, 9, 0, 2, 5, 8, 3, 2, 6, 5, 2, 9, 7, 3, 0, 7, 8
OFFSET
0,1
LINKS
Eric Weisstein's World of Mathematics, Dirichlet Beta Function.
FORMULA
beta(9) = Sum_{n>=0} (-1)^n/(2n+1)^9 = (zeta(9, 1/4) - zeta(9, 3/4))/262144 = 277*Pi^9/8257536.
Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p^9)^(-1). - Amiram Eldar, Nov 06 2023
EXAMPLE
0.999949684187220089821358873293847527372747996917961601223162723...
MATHEMATICA
RealDigits[DirichletBeta[9], 10, 104] // First
PROG
(PARI) default(realprecision, 100); 277*Pi^9/8257536 \\ G. C. Greubel, Aug 24 2018
(Magma) SetDefaultRealField(RealField(100)); R:=RealField(); 277*Pi(R)^9/8257536; // G. C. Greubel, Aug 24 2018
CROSSREFS
Cf. A003881 (beta(1)=Pi/4), A006752 (beta(2)=Catalan), A153071 (beta(3)), A175572 (beta(4)), A175571 (beta(5)), A175570 (beta(6)), A258814 (beta(7)), A258815 (beta(8)).
Sequence in context: A346450 A102819 A111664 * A291430 A146494 A111691
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy