OFFSET
0,1
COMMENTS
Also the ratio of the area of a circle to the circumscribed square. More generally, the ratio of the area of an ellipse to the circumscribed rectangle. Also the ratio of the volume of a cylinder to the circumscribed cube. - Omar E. Pol, Sep 25 2013
Also the surface area of a quarter-sphere of diameter 1. - Omar E. Pol, Oct 03 2013
Least positive solution to sin(x) = cos(x). - Franklin T. Adams-Watters, Jun 17 2014
Dirichlet L-series of the non-principal character modulo 4 (A101455) at 1. See e.g. Table 22 of arXiv:1008.2547. - R. J. Mathar, May 27 2016
This constant is also equal to the infinite sum of the arctangent functions with nested radicals consisting of square roots of two. Specifically, one of the Viete-like formulas for Pi is given by Pi/4 = Sum_{k = 2..oo} arctan(sqrt(2 - a_{k - 1})/a_k), where the nested radicals are defined by recurrence relations a_k = sqrt(2 + a_{k - 1}) and a_1 = sqrt(2) (see the article [Abrarov and Quine]). - Sanjar Abrarov, Jan 09 2017
Pi/4 is the area enclosed between circumcircle and incircle of a regular polygon of unit side. - Mohammed Yaseen, Nov 29 2023
REFERENCES
Jörg Arndt and Christoph Haenel, Pi: Algorithmen, Computer, Arithmetik, Springer 2000, p. 150.
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 6.3 and 8.4, pp. 429 and 492.
Douglas R. Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid, Basic Books, p. 408.
J. Rivaud, Analyse, Séries, équations différentielles, Mathématiques supérieures et spéciales, Premier cycle universitaire, Vuibert, 1981, Exercice 3, p. 136.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
Sanjar M. Abrarov and Brendan M. Quine, A Viète-like formula for pi based on infinite sum of the arctangent functions with nested radicals, figshare, 4509014, (2017).
Peter Bala, Arctanh(z) and the Legendre polynomials
Jonathan M. Borwein, Peter B. Borwein, and Karl Dilcher, Pi, Euler numbers and asymptotic expansions, Amer. Math. Monthly, 96 (1989), 681-687.
Ronald K. Hoeflin, Titan Test.
Richard J. Mathar, Table of Dirichlet L-Series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 2010-2015.
Literate Programs, Pi with Machin's formula (Haskell).
Michael Penn, A surprising appearance of pie!, YouTube video, 2020.
Michael Penn, Transforming normal identities into "crazy" ones, YouTube video, 2022.
Srinivasa Ramanujan, Question 353, J. Ind. Math. Soc.
Eric Weisstein's World of Mathematics, Prime Products.
Wikipedia, Leibniz formula for Pi.
FORMULA
Equals Integral_{x=0..oo} sin(2x)/(2x) dx.
Equals Integral_{x=0..1} 1/(1+x^2) dx. - Gary W. Adamson, Jun 22 2003
Equals Integral_{x=0..Pi/2} sin(x)^2 dx, or Integral_{x=0..Pi/2} cos(x)^2 dx. - Jean-François Alcover, Mar 26 2013
Equals (Sum_{x=0..oo} sin(x)*cos(x)/x) - 1/2. - Bruno Berselli, May 13 2013
Equals (-digamma(1/4) + digamma(3/4))/4. - Jean-François Alcover, May 31 2013
Equals Sum_{n>=0} (-1)^n/(2*n+1). - Geoffrey Critzer, Nov 03 2013
Equals Integral_{x=0..1} Product_{k>=1} (1-x^(8*k))^3 dx [cf. A258414]. - Vaclav Kotesovec, May 30 2015
Equals Product_{k in A071904} (if k mod 4 = 1 then (k-1)/(k+1)) else (if k mod 4 = 3 then (k+1)/(k-1)). - Dimitris Valianatos, Oct 05 2016
From Peter Bala, Nov 15 2016: (Start)
For N even: 2*(Pi/4 - Sum_{k = 1..N/2} (-1)^(k-1)/(2*k - 1)) ~ (-1)^(N/2)*(1/N - 1/N^3 + 5/N^5 - 61/N^7 + 1385/N^9 - ...), where the sequence of unsigned coefficients [1, 1, 5, 61, 1385, ...] is A000364. See Borwein et al., Theorem 1 (a).
For N odd: 2*(Pi/4 - Sum_{k = 1..(N-1)/2} (-1)^(k-1)/(2*k - 1)) ~ (-1)^((N-1)/2)*(1/N - 1/N^2 + 2/N^4 - 16/N^6 + 272/N^8 - ...), where the sequence of unsigned coefficients [1, 1, 2, 16, 272, ...] is A000182 with an extra initial term of 1.
For N = 0,1,2,... and m = 1,3,5,... there holds Pi/4 = (2*N)! * m^(2*N) * Sum_{k >= 0} ( (-1)^(N+k) * 1/Product_{j = -N..N} (2*k + 1 + 2*m*j) ); when N = 0 we get the Madhava-Gregory-Leibniz series for Pi/4.
For examples of asymptotic expansions for the tails of these series representations for Pi/4 see A024235 (case N = 1, m = 1), A278080 (case N = 2, m = 1) and A278195 (case N = 3, m = 1).
For N = 0,1,2,..., Pi/4 = 4^(N-1)*N!/(2*N)! * Sum_{k >= 0} 2^(k+1)*(k + N)!* (k + 2*N)!/(2*k + 2*N + 1)!, follows by applying Euler's series transformation to the above series representation for Pi/4 in the case m = 1. (End)
From Peter Bala, Nov 05 2019: (Start)
For k = 0,1,2,..., Pi/4 = k!*Sum_{n = -oo..oo} 1/((4*n+1)*(4*n+3)* ...*(4*n+2*k+1)), where Sum_{n = -oo..oo} f(n) is understood as lim_{j -> oo} Sum_{n = -j..j} f(n).
Equals Integral_{x = 0..oo} sin(x)^4/x^2 dx = Sum_{n >= 1} sin(n)^4/n^2, by the Abel-Plana formula.
Equals Integral_{x = 0..oo} sin(x)^3/x dx = Sum_{n >= 1} sin(n)^3/n, by the Abel-Plana formula. (End)
From Amiram Eldar, Aug 19 2020: (Start)
Equals arcsin(1/sqrt(2)).
Equals Product_{k>=1} (1 - 1/(2*k+1)^2).
Equals Integral_{x=0..oo} x/(x^4 + 1) dx.
Equals Integral_{x=0..oo} 1/(x^2 + 4) dx. (End)
With offset 1, equals 5 * Pi / 2. - Sean A. Irvine, Aug 19 2021
Equals (1/2)!^2 = Gamma(3/2)^2. - Gary W. Adamson, Aug 23 2021
Equals Integral_{x = 0..oo} exp(-x)*sin(x)/x dx (see Rivaud reference). - Bernard Schott, Jan 28 2022
From Amiram Eldar, Nov 06 2023: (Start)
Equals beta(1), where beta is the Dirichlet beta function.
Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p)^(-1). (End)
Equals arctan( F(1)/F(4) ) + arctan( F(2)/F(3) ), where F(1), F(2), F(3), and F(4) are any four consecutive Fibonacci numbers. - Gary W. Adamson, Mar 03 2024
Pi/4 = Sum_{n >= 1} i/(n*P(n, i)*P(n-1, i)) = (1/2)*Sum_{n >= 1} (-1)^(n+1)*4^n/(n*A006139(n)*A006139(n-1)), where i = sqrt(-1) and P(n, x) denotes the n-th Legendre polynomial. The n-th summand of the series is O( 1/(3 + 2*sqrt(3))^n ). - Peter Bala, Mar 16 2024
Equals arctan( phi^(-3) ) + arctan(phi^(-1) ). - Gary W. Adamson, Mar 27 2024
Equals Sum_{n>=1} eta(n)/2^n, where eta(n) is the Dirichlet eta function. - Antonio Graciá Llorente, Oct 04 2024
EXAMPLE
0.785398163397448309615660845819875721049292349843776455243736148...
N = 2, m = 6: Pi/4 = 4!*3^4 Sum_{k >= 0} (-1)^k/((2*k - 11)*(2*k - 5)*(2*k + 1)*(2*k + 7)*(2*k + 13)). - Peter Bala, Nov 15 2016
MAPLE
evalf(Pi/4) ;
MATHEMATICA
RealDigits[N[Pi/4, 6! ]] (* Vladimir Joseph Stephan Orlovsky, Dec 02 2009 *)
(* PROGRAM STARTS *)
(* Define the nested radicals a_k by recurrence *)
a[k_] := Nest[Sqrt[2 + #1] & , 0, k]
(* Example of Pi/4 approximation at K = 100 *)
Print["The actual value of Pi/4 is"]
N[Pi/4, 40]
Print["At K = 100 the approximated value of Pi/4 is"]
K := 100; (* the truncating integer *)
N[Sum[ArcTan[Sqrt[2 - a[k - 1]]/a[k]], {k, 2, K}], 40] (* equation (8) *)
(* Error terms for Pi/4 approximations *)
Print["Error terms for Pi/4"]
k := 1; (* initial value of the index k *)
K := 10; (* initial value of the truncating integer K *)
sqn := {}; (* initiate the sequence *)
AppendTo[sqn, {"Truncating integer K ", " Error term in Pi/4"}];
While[K <= 30,
AppendTo[sqn, {K,
N[Pi/4 - Sum[ArcTan[Sqrt[2 - a[k - 1]]/a[k]], {k, 2, K}], 1000] //
N}]; K++]
Print[MatrixForm[sqn]]
(* Sanjar Abrarov, Jan 09 2017 *)
PROG
(Haskell) -- see link: Literate Programs
import Data.Char (digitToInt)
a003881_list len = map digitToInt $ show $ machin `div` (10 ^ 10) where
machin = 4 * arccot 5 unity - arccot 239 unity
unity = 10 ^ (len + 10)
arccot x unity = arccot' x unity 0 (unity `div` x) 1 1 where
arccot' x unity summa xpow n sign
| term == 0 = summa
| otherwise = arccot'
x unity (summa + sign * term) (xpow `div` x ^ 2) (n + 2) (- sign)
where term = xpow `div` n
-- Reinhard Zumkeller, Nov 20 2012
(SageMath) # Leibniz/Cohen/Villegas/Zagier/Arndt/Haenel
def FastLeibniz(n):
b = 2^(2*n-1); c = b; s = 0
for k in range(n-1, -1, -1):
t = 2*k+1
s = s + c/t if is_even(k) else s - c/t
b *= (t*(k+1))/(2*(n-k)*(n+k))
c += b
return s/c
A003881 = RealField(3333)(FastLeibniz(1330))
print(A003881) # Peter Luschny, Nov 20 2012
(PARI) Pi/4 \\ Charles R Greathouse IV, Jul 07 2014
(Magma) R:= RealField(100); Pi(R)/4; // G. C. Greubel, Mar 08 2018
CROSSREFS
KEYWORD
AUTHOR
EXTENSIONS
a(98) and a(99) corrected by Reinhard Zumkeller, Nov 20 2012
STATUS
approved