login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A280621
E.g.f. C(x) satisfies: C(x)^2 - S(x)^2 = 1 and D(x)^3 - S(x)^3 = 1, where functions S(x) and D(x) are described by A280620 and A280622, respectively.
4
1, 0, 1, 0, 1, 20, 1, 420, 1841, 7140, 190001, 555940, 12774881, 141201060, 946212001, 25228809060, 202847031121, 3740829095780, 66881800434001, 733452394335780, 19147386646802561, 273971147946411300, 5322649952666824001, 124410236296546608100, 2010649742531247641201, 53865539929721514523620, 1113617365649653498950001
OFFSET
0,6
FORMULA
E.g.f. C(x), where related functions S = S(x), C = C(x), and D = D(x) possess the following properties.
(1.a) C^2 - S^2 = 1.
(1.b) D^3 - S^3 = 1.
Integrals.
(2.a) S = Integral C*D^2 dx.
(2.b) C = 1 + Integral S*D^2 dx.
(2.c) D = 1 + Integral C*S^2 dx.
(2.d) C + S = 1 + Integral (C + S) * D^2 dx.
(2.e) D - S = 1 - Integral (D^2 - S^2) * C dx.
Exponential.
(3.a) C + S = exp( Integral D^2 dx ).
(3.b) D - S = exp( Integral -(D + S) * C dx.
(3.c) C = cosh( Integral D^2 dx ).
(3.d) S = sinh( Integral D^2 dx ).
Derivatives.
(4.a) S' = C*D^2.
(4.b) C' = S*D^2.
(4.c) D' = C*S^2.
(4.d) (C' + S')/(C + S) = D^2.
(4.e) (D' - S')/(D - S) = -(D + S) * C.
EXAMPLE
E.g.f.: C(x) = 1 + x^2/2! + x^4/4! + 20*x^5/5! + x^6/6! + 420*x^7/7! + 1841*x^8/8! + 7140*x^9/9! + 190001*x^10/10! + 555940*x^11/11! + 12774881*x^12/12! + 141201060*x^13/13! + 946212001*x^14/14! + 25228809060*x^15/15! + 202847031121*x^16/16! + 3740829095780*x^17/17! + 66881800434001*x^18/18! +...
such that
(1) C(x)^2 - S(x)^2 = 1,
(2) D(x)^3 - S(x)^3 = 1,
where functions S(x) and D(x) are illustrated below.
RELATED SERIES.
S(x) = x + x^3/3! + 4*x^4/4! + x^5/5! + 100*x^6/6! + 161*x^7/7! + 1764*x^8/8! + 22001*x^9/9! + 49700*x^10/10! + 1649921*x^11/11! + 10057124*x^12/12! + 105372001*x^13/13! + 2044251300*x^14/14! + 12879413281*x^15/15! + 315936586084*x^16/16! + 3892292034001*x^17/17! + 49987743460900*x^18/18! +...
D(x) = 1 + 2*x^3/3! + 20*x^5/5! + 40*x^6/6! + 182*x^7/7! + 3360*x^8/8! + 5320*x^9/9! + 165480*x^10/10! + 1193962*x^11/11! + 7681520*x^12/12! + 182657020*x^13/13! + 1028347320*x^14/14! + 21430373342*x^15/15! + 296385660480*x^16/16! + 2926954283120*x^17/17! + 74104327031560*x^18/18! +...
S(x)^2 = 2*x^2/2! + 8*x^4/4! + 40*x^5/5! + 32*x^6/6! + 1680*x^7/7! + 3808*x^8/8! + 49560*x^9/9! + 646912*x^10/10! + 2192960*x^11/11! + 65759008*x^12/12! + 475555080*x^13/13! + 5786067392*x^14/14! + 114473289840*x^15/15! + 891694992608*x^16/16! + 21934824868600*x^17/17! + 298444830841472*x^18/18! +...
such that C(x)^2 = 1 + S(x)^2.
D(x)^2 = 1 + 4*x^3/3! + 40*x^5/5! + 160*x^6/6! + 364*x^7/7! + 11200*x^8/8! + 24080*x^9/9! + 519120*x^10/10! + 5344724*x^11/11! + 27288800*x^12/12! + 752580920*x^13/13! + 5142016880*x^14/14! + 86718961084*x^15/15! + 1483995676800*x^16/16! + 13774998062560*x^17/17! + 356032443815440*x^18/18! +...
such that D(x)^2 = S'(x)/C(x) = C'(x)/S(x).
S(x)^3 = 6*x^3/3! + 60*x^5/5! + 360*x^6/6! + 546*x^7/7! + 23520*x^8/8! + 69720*x^9/9! + 1060920*x^10/10! + 14669886*x^11/11! + 67692240*x^12/12! + 1957699380*x^13/13! + 16377040680*x^14/14! + 228086752026*x^15/15! + 4642872212160*x^16/16! + 43205148425040*x^17/17! + 1084693228559640*x^18/18! +...
such that D(x)^3 = 1 + S(x)^3.
C(x) + S(x) = 1 + x + x^2/2! + x^3/3! + 5*x^4/4! + 21*x^5/5! + 101*x^6/6! + 581*x^7/7! + 3605*x^8/8! + 29141*x^9/9! + 239701*x^10/10! + 2205861*x^11/11! + 22832005*x^12/12! + 246573061*x^13/13! + 2990463301*x^14/14! + 38108222341*x^15/15! + 518783617205*x^16/16! + 7633121129781*x^17/17! + 116869543894901*x^18/18! + 1918479435194021*x^19/19! + 33025793008567205*x^20/20! + 595507639576003301*x^21/21! +...
such that C(x) + S(x) = exp( Integral D(x)^2 dx ).
1/(D(x) - S(x)) = 1 + x + 2*x^2/2! + 5*x^3/3! + 20*x^4/4! + 81*x^5/5! + 452*x^6/6! + 2765*x^7/7! + 19460*x^8/8! + 156121*x^9/9! + 1368052*x^10/10! + 13327125*x^11/11! + 141326500*x^12/12! + 1616350561*x^13/13! + 20040895252*x^14/14! + 264759181085*x^15/15! + 3740415315140*x^16/16! + 56164918735401*x^17/17! + 891038080096052*x^18/18! + 14957788277468645*x^19/19! + 263869908657105380*x^20/20! + 4889789934063374641*x^21/21! +...
such that 1/(D(x) - S(x)) = exp( Integral (D(x) + S(x)) * C(x) dx.
PROG
(PARI) {a(n) = my(S=x, C=1, D=1); for(i=1, n, S = intformal( C*D^2 + x*O(x^n)); C = 1 + intformal( S*D^2 ); D = 1 + intformal( C*S^2 )); n!*polcoeff(C, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A280620 (S), A280622 (D), A280623 (C+S), A280624 (1/(C-S)).
Sequence in context: A164812 A332258 A327023 * A223522 A040395 A040394
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 06 2017
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy