login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A280618
Expansion of (Sum_{k>=1} x^(k^3))^2.
12
0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,10
COMMENTS
Number of ways to write n as an ordered sum of two positive cubes.
LINKS
FORMULA
G.f.: (Sum_{k>=1} x^(k^3))^2.
EXAMPLE
a(9) = 2 because we have [8, 1] and [1, 8].
MATHEMATICA
nmax = 150; CoefficientList[Series[(Sum[x^(k^3), {k, 1, nmax}])^2, {x, 0, nmax}], x]
PROG
(PARI)
A010057(n) = ispower(n, 3);
A280618(n) = if(n<2, 0, sum(r=1, sqrtnint(n-1, 3), A010057(n-(r^3)))); \\ Antti Karttunen, Nov 30 2021
CROSSREFS
Cf. A000578, A001235 (positions of terms > 3), A003325 (of nonzero terms), A010057, A063725, A173677.
Sequence in context: A060478 A088806 A359602 * A347714 A089807 A089810
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 06 2017
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy