login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303131
Expansion of Product_{n>=1} (1 + (16*x)^n)^(-1/4).
5
1, -4, -24, -1248, 1632, -267136, -669440, -56925184, 597165568, -19934894080, 61831327744, -3209599664128, 47593545383936, -840449808072704, 8113679782510592, -350055154021040128, 5703847053344768000, -57129722970675609600, 704939718429511778304
OFFSET
0,2
COMMENTS
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 1/4, g(n) = -16^n.
LINKS
FORMULA
a(n) ~ (-1)^n * exp(Pi*sqrt(n/24)) * 2^(4*n - 9/4) / (3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Apr 20 2018
MATHEMATICA
CoefficientList[Series[(2/QPochhammer[-1, 16*x])^(1/4), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 20 2018 *)
CROSSREFS
Expansion of Product_{n>=1} (1 + ((b^2)*x)^n)^(-1/b): A081362 (b=1), A298993 (b=2), A303130 (b=3), this sequence (b=4), A303132 (b=5).
Sequence in context: A024252 A368141 A368144 * A012124 A108185 A110972
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 19 2018
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy