login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Expansion of Product_{n>=1} (1 + (16*x)^n)^(-1/4).
5

%I #16 Apr 20 2018 08:41:44

%S 1,-4,-24,-1248,1632,-267136,-669440,-56925184,597165568,-19934894080,

%T 61831327744,-3209599664128,47593545383936,-840449808072704,

%U 8113679782510592,-350055154021040128,5703847053344768000,-57129722970675609600,704939718429511778304

%N Expansion of Product_{n>=1} (1 + (16*x)^n)^(-1/4).

%C This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 1/4, g(n) = -16^n.

%H Seiichi Manyama, <a href="/A303131/b303131.txt">Table of n, a(n) for n = 0..500</a>

%F a(n) ~ (-1)^n * exp(Pi*sqrt(n/24)) * 2^(4*n - 9/4) / (3^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Apr 20 2018

%t CoefficientList[Series[(2/QPochhammer[-1, 16*x])^(1/4), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Apr 20 2018 *)

%Y Expansion of Product_{n>=1} (1 + ((b^2)*x)^n)^(-1/b): A081362 (b=1), A298993 (b=2), A303130 (b=3), this sequence (b=4), A303132 (b=5).

%Y Cf. A303124, A303135.

%K sign

%O 0,2

%A _Seiichi Manyama_, Apr 19 2018

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy