login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A318498
Denominators of the sequence whose Dirichlet convolution with itself yields A061389, number of (1+phi)-divisors of n.
4
1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 8, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 8, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 8, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 16, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 8, 8, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 8, 1, 2, 2, 4, 1, 1, 1, 1, 1
OFFSET
1,4
COMMENTS
The sequence seems to give the denominators of a few other similarly constructed rational valued sequences obtained as "Dirichlet Square Roots" (of possibly A092520 and A293443).
LINKS
FORMULA
a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A061389(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
a(n) = 2^A318499(n).
PROG
(PARI)
up_to = 65537;
A061389(n) = factorback(apply(e -> (1+eulerphi(e)), factor(n)[, 2]));
DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u}; \\ From A317937.
v318497_98 = DirSqrt(vector(up_to, n, A061389(n)));
A318497(n) = numerator(v318497_98[n]);
A318498(n) = denominator(v318497_98[n]);
CROSSREFS
Cf. A061389, A318497 (numerators), A318499.
Cf. also A299150, A046644.
Sequence in context: A370077 A370080 A372331 * A093997 A157196 A300410
KEYWORD
nonn,frac
AUTHOR
Antti Karttunen, Aug 30 2018
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy