login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A336643
Squarefree kernel of n divided by the squarefree part of n: a(n) = rad(n) / core(n).
10
1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 1, 5, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 7, 5, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 5, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 7, 3, 10, 1, 1, 1, 1, 1
OFFSET
1,4
COMMENTS
a(n) is the least number k such that k*n (and also n/k) is an exponentially odd number (A268335). - Amiram Eldar, Nov 18 2022
FORMULA
a(n) = A007947(n) / A007913(n).
Multiplicative with a(p^k) = p^(1-(k mod 2)) = p^A059841(k).
a(n) = n/A350390(n). - Amiram Eldar, Jan 01 2022
a(n) = A356191(n)/n. - Amiram Eldar, Nov 18 2022
Dirichlet g.f.: zeta(2*s) * Product_{p prime} (1 + 1/p^s + 1/p^(2*s-1) - 1/p^(2*s)). - Amiram Eldar, Sep 09 2023
From Vaclav Kotesovec, Sep 09 2023: (Start)
Let f(s) = Product_{p prime} (1 - p^(1-5*s) + p^(2-5*s) + 2*p^(1-4*s) - p^(2-4*s) - p^(1-3*s) + p^(-3*s) - 2*p^(-2*s)).
Dirichlet g.f.: zeta(s) * zeta(2*s) * zeta(2*s-1) * f(s).
Sum_{k=1..n} a(k) ~ Pi^2 * f(1) * n / 12 * (log(n) + 3*gamma - 1 + 12*zeta'(2)/Pi^2 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - 4/p^2 + 4/p^3 - 1/p^4) = A256392 = 0.217778716619536378323007514119446813130797755001355937648276403523626491...,
f'(1) = f(1) * Sum_{p prime} (11*p - 5) * log(p) / (p^3 + p^2 - 3*p + 1) = f(1) * 4.716596820856763078660955244870812634072512131626849517007098664560806248...
and gamma is the Euler-Mascheroni constant A001620. (End)
MATHEMATICA
f[p_, e_] := p^(1 - Mod[e, 2]); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 07 2020 *)
PROG
(PARI) A336643(n) = (factorback(factorint(n)[, 1]) / core(n));
(PARI) A336643(n) = if(1==n, n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^(1-(f[i, 2]%2))));
(PARI) for(n=1, 100, print1(direuler(p=2, n, 1/(1-X^2) * (1 + X + p*X^2 - X^2))[n], ", ")) \\ Vaclav Kotesovec, Sep 09 2023
(Python)
from math import prod
from sympy.ntheory.factor_ import primefactors, core
def A336643(n): return prod(primefactors(n))//core(n) # Chai Wah Wu, Dec 30 2021
KEYWORD
nonn,easy,mult
AUTHOR
Antti Karttunen, Jul 28 2020
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy