login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A352051
Sum of the 5th powers of the divisor complements of the odd proper divisors of n.
11
0, 32, 243, 1024, 3125, 7808, 16807, 32768, 59292, 100032, 161051, 249856, 371293, 537856, 762743, 1048576, 1419857, 1897376, 2476099, 3201024, 4101151, 5153664, 6436343, 7995392, 9768750, 11881408, 14408199, 17211392, 20511149, 24407808, 28629151, 33554432, 39296687
OFFSET
1,2
LINKS
FORMULA
a(n) = n^5 * Sum_{d|n, d<n, d odd} 1 / d^5.
G.f.: Sum_{k>=2} k^5 * x^k / (1 - x^(2*k)). - Ilya Gutkovskiy, May 18 2023
From Amiram Eldar, Oct 13 2023: (Start)
a(n) = A051002(n) * A006519(n)^5 - A000035(n).
Sum_{k=1..n} a(k) = c * n^6 / 6, where c = 63*zeta(6)/64 = 1.00144707... . (End)
EXAMPLE
a(10) = 10^5 * Sum_{d|10, d<10, d odd} 1 / d^5 = 10^5 * (1/1^5 + 1/5^5) = 100032.
MAPLE
f:= proc(n) local m, d;
m:= n/2^padic:-ordp(n, 2);
add((n/d)^5, d = select(`<`, numtheory:-divisors(m), n))
end proc:
map(f, [$1..40]); # Robert Israel, Apr 03 2023
MATHEMATICA
A352051[n_]:=DivisorSum[n, 1/#^5&, #<n&&OddQ[#]&]n^5; Array[A352051, 50] (* Paolo Xausa, Aug 09 2023 *)
a[n_] := DivisorSigma[-5, n/2^IntegerExponent[n, 2]] * n^5 - Mod[n, 2]; Array[a, 100] (* Amiram Eldar, Oct 13 2023 *)
PROG
(PARI) a(n) = n^5 * sigma(n >> valuation(n, 2), -5) - n % 2; \\ Amiram Eldar, Oct 13 2023
CROSSREFS
Sum of the k-th powers of the divisor complements of the odd proper divisors of n for k=0..10: A091954 (k=0), A352047 (k=1), A352048 (k=2), A352049 (k=3), A352050 (k=4), this sequence (k=5), A352052 (k=6), A352053 (k=7), A352054 (k=8), A352055 (k=9), A352056 (k=10).
Sequence in context: A257855 A055014 A000584 * A050752 A373000 A351603
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Mar 01 2022
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy