Contents
10 found
Order:
  1. Countabilism and Maximality Principles.Neil Barton & Sy-David Friedman - manuscript
    It is standard in set theory to assume that Cantor's Theorem establishes that the continuum is an uncountable set. A challenge for this position comes from the observation that through forcing one can collapse any cardinal to the countable and that the continuum can be made arbitrarily large. In this paper, we present a different take on the relationship between Cantor's Theorem and extensions of universes, arguing that they can be seen as showing that every set is countable and that (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  2. Observation and Intuition.Justin Clarke-Doane & Avner Ash - 2023 - In Carolin Antos, Neil Barton & Giorgio Venturi (eds.), The Palgrave Companion to the Philosophy of Set Theory. Palgrave.
    The motivating question of this paper is: ‘How are our beliefs in the theorems of mathematics justified?’ This is distinguished from the question ‘How are our mathematical beliefs reliably true?’ We examine an influential answer, outlined by Russell, championed by Gödel, and developed by those searching for new axioms to settle undecidables, that our mathematical beliefs are justified by ‘intuitions’, as our scientific beliefs are justified by observations. On this view, axioms are analogous to laws of nature. They are postulated (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. El Axioma de elección en el quehacer matemático contemporáneo.Franklin Galindo & Randy Alzate - 2022 - Aitías 2 (3):49-126.
    Para matemáticos interesados en problemas de fundamentos, lógico-matemáticos y filósofos de la matemática, el axioma de elección es centro obligado de reflexión, pues ha sido considerado esencial en el debate dentro de las posiciones consideradas clásicas en filosofía de la matemática (intuicionismo, formalismo, logicismo, platonismo), pero también ha tenido una presencia fundamental para el desarrollo de la matemática y metamatemática contemporánea. Desde una posición que privilegia el quehacer matemático, nos proponemos mostrar los aportes que ha tenido el axioma en varias (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. A naturalistic justification of the generic multiverse with a core.Matteo de Ceglie - 2018 - Contributions of the Austrian Ludwig Wittgenstein Society 26:34-36.
    In this paper, I argue that a naturalist approach in philosophy of mathematics justifies a pluralist conception of set theory. For the pluralist, there is not a Single Universe, but there is rather a Multiverse, composed by a plurality of universes generated by various set theories. In order to justify a pluralistic approach to sets, I apply the two naturalistic principles developed by Penelope Maddy (cfr. Maddy (1997)), UNIFY and MAXIMIZE, and analyze through them the potential of the set theoretic (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. Maximality and ontology: how axiom content varies across philosophical frameworks.Sy-David Friedman & Neil Barton - 2017 - Synthese 197 (2):623-649.
    Discussion of new axioms for set theory has often focused on conceptions of maximality, and how these might relate to the iterative conception of set. This paper provides critical appraisal of how certain maximality axioms behave on different conceptions of ontology concerning the iterative conception. In particular, we argue that forms of multiversism (the view that any universe of a certain kind can be extended) and actualism (the view that there are universes that cannot be extended in particular ways) face (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   5 citations  
  6. Ipotesi del Continuo.Claudio Ternullo - 2017 - Aphex 16.
    L’Ipotesi del Continuo, formulata da Cantor nel 1878, è una delle congetture più note della teoria degli insiemi. Il Problema del Continuo, che ad essa è collegato, fu collocato da Hilbert, nel 1900, fra i principali problemi insoluti della matematica. A seguito della dimostrazione di indipendenza dell’Ipotesi del Continuo dagli assiomi della teoria degli insiemi, lo status attuale del problema è controverso. In anni più recenti, la ricerca di una soluzione del Problema del Continuo è stata anche una delle ragioni (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. The Search for New Axioms in the Hyperuniverse Programme.Claudio Ternullo & Sy-David Friedman - 2016 - In Francesca Boccuni & Andrea Sereni (eds.), Objectivity, Realism, and Proof. FilMat Studies in the Philosophy of Mathematics. Cham, Switzerland: Springer International Publishing. pp. 165-188.
    The Hyperuniverse Programme, introduced in Arrigoni and Friedman (2013), fosters the search for new set-theoretic axioms. In this paper, we present the procedure envisaged by the programme to find new axioms and the conceptual framework behind it. The procedure comes in several steps. Intrinsically motivated axioms are those statements which are suggested by the standard concept of set, i.e. the `maximal iterative concept', and the programme identi fies higher-order statements motivated by the maximal iterative concept. The satisfaction of these statements (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. What is Absolute Undecidability?†.Justin Clarke-Doane - 2012 - Noûs 47 (3):467-481.
    It is often supposed that, unlike typical axioms of mathematics, the Continuum Hypothesis (CH) is indeterminate. This position is normally defended on the ground that the CH is undecidable in a way that typical axioms are not. Call this kind of undecidability “absolute undecidability”. In this paper, I seek to understand what absolute undecidability could be such that one might hope to establish that (a) CH is absolutely undecidable, (b) typical axioms are not absolutely undecidable, and (c) if a mathematical (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   14 citations  
  9. Constructibilidad relativizada y el Axioma de elección.Franklin Galindo & Carlos Di Prisco - 2010 - Mixba'al. Revista Metropolitana de Matemáticas 1 (1):23-40.
    El objetivo de este trabajo es presentar en un solo cuerpo tres maneras de relativizar (o generalizar) el concepto de conjunto constructible de Gödel que no suelen aparecer juntas en la literatura especializada y que son importantes en la Teoría de Conjuntos, por ejemplo para resolver problemas de consistencia o independencia. Presentamos algunos modelos resultantes de las diferentes formas de relativizar el concepto de constructibilidad, sus propiedades básicas y algunas formas débiles del Axioma de Elección válidas o no válidas en (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  10. Un problema abierto de independencia en la teoría de conjuntos relacionado con ultrafiltros no principales sobre el conjunto de los números naturales N, y con Propiedades Ramsey.Franklin Galindo - manuscript
    En el ámbito de la lógica matemática existe un problema sobre la relación lógica entre dos versiones débiles del Axioma de elección (AE) que no se ha podido resolver desde el año 2000 (aproximadamente). Tales versiones están relacionadas con ultrafiltros no principales y con Propiedades Ramsey (Bernstein, Polarizada, Subretículo, Ramsey, Ordinales flotantes, etc). La primera versión débil del AE es la siguiente (A): “Existen ultrafiltros no principales sobre el conjunto de los números naturales (ℕ)”. Y la segunda versión débil del (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy