Skip to main content
Genetics logoLink to Genetics
. 2001 Apr;157(4):1773–1787. doi: 10.1093/genetics/157.4.1773

Genetic and nongenetic bases for the L-shaped distribution of quantitative trait loci effects.

B Bost 1, D de Vienne 1, F Hospital 1, L Moreau 1, C Dillmann 1
PMCID: PMC1461615  PMID: 11290730

Abstract

The L-shaped distribution of estimated QTL effects (R(2)) has long been reported. We recently showed that a metabolic mechanism could account for this phenomenon. But other nonexclusive genetic or nongenetic causes may contribute to generate such a distribution. Using analysis and simulations of an additive genetic model, we show that linkage disequilibrium between QTL, low heritability, and small population size may also be involved, regardless of the gene effect distribution. In addition, a comparison of the additive and metabolic genetic models revealed that estimates of the QTL effects for traits proportional to metabolic flux are far less robust than for additive traits. However, in both models the highest R(2)'s repeatedly correspond to the same set of QTL.

Full Text

The Full Text of this article is available as a PDF (330.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barton N. H., Turelli M. Adaptive landscapes, genetic distance and the evolution of quantitative characters. Genet Res. 1987 Apr;49(2):157–173. doi: 10.1017/s0016672300026951. [DOI] [PubMed] [Google Scholar]
  2. Bost B., Dillmann C., de Vienne D. Fluxes and metabolic pools as model traits for quantitative genetics. I. The L-shaped distribution of gene effects. Genetics. 1999 Dec;153(4):2001–2012. doi: 10.1093/genetics/153.4.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Doebley J., Stec A. Inheritance of the morphological differences between maize and teosinte: comparison of results for two F2 populations. Genetics. 1993 Jun;134(2):559–570. doi: 10.1093/genetics/134.2.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Edwards M. D., Stuber C. W., Wendel J. F. Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics. 1987 May;116(1):113–125. doi: 10.1093/genetics/116.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eshed Y., Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics. 1995 Nov;141(3):1147–1162. doi: 10.1093/genetics/141.3.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fatokun C. A., Menancio-Hautea D. I., Danesh D., Young N. D. Evidence for orthologous seed weight genes in cowpea and mung bean based on RFLP mapping. Genetics. 1992 Nov;132(3):841–846. doi: 10.1093/genetics/132.3.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Georges M., Andersson L. Livestock genomics comes of age. Genome Res. 1996 Oct;6(10):907–921. doi: 10.1101/gr.6.10.907. [DOI] [PubMed] [Google Scholar]
  8. Jansen R. C. Interval mapping of multiple quantitative trait loci. Genetics. 1993 Sep;135(1):205–211. doi: 10.1093/genetics/135.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jansen R. C., Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics. 1994 Apr;136(4):1447–1455. doi: 10.1093/genetics/136.4.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kacser H., Burns J. A. The control of flux. Symp Soc Exp Biol. 1973;27:65–104. [PubMed] [Google Scholar]
  11. Kacser H., Burns J. A. The molecular basis of dominance. Genetics. 1981 Mar-Apr;97(3-4):639–666. doi: 10.1093/genetics/97.3-4.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kearsey M. J., Farquhar A. G. QTL analysis in plants; where are we now? Heredity (Edinb) 1998 Feb;80(Pt 2):137–142. doi: 10.1046/j.1365-2540.1998.00500.x. [DOI] [PubMed] [Google Scholar]
  13. Lin Y. R., Schertz K. F., Paterson A. H. Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics. 1995 Sep;141(1):391–411. doi: 10.1093/genetics/141.1.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Liu S. C., Kowalski S. P., Lan T. H., Feldmann K. A., Paterson A. H. Genome-wide high-resolution mapping by recurrent intermating using Arabidopsis thaliana as a model. Genetics. 1996 Jan;142(1):247–258. doi: 10.1093/genetics/142.1.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mackay T. F. The nature of quantitative genetic variation revisited: lessons from Drosophila bristles. Bioessays. 1996 Feb;18(2):113–121. doi: 10.1002/bies.950180207. [DOI] [PubMed] [Google Scholar]
  16. McMillan I., Robertson A. The power of methods for the detection of major genes affecting quantitative characters. Heredity (Edinb) 1974 Jun;32(3):349–356. doi: 10.1038/hdy.1974.43. [DOI] [PubMed] [Google Scholar]
  17. Orr H. A. The evolutionary genetics of adaptation: a simulation study. Genet Res. 1999 Dec;74(3):207–214. doi: 10.1017/s0016672399004164. [DOI] [PubMed] [Google Scholar]
  18. Paterson A. H., Damon S., Hewitt J. D., Zamir D., Rabinowitch H. D., Lincoln S. E., Lander E. S., Tanksley S. D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics. 1991 Jan;127(1):181–197. doi: 10.1093/genetics/127.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Paterson A. H., Lin Y. R., Li Z., Schertz K. F., Doebley J. F., Pinson S. R., Liu S. C., Stansel J. W., Irvine J. E. Convergent domestication of cereal crops by independent mutations at corresponding genetic Loci. Science. 1995 Sep 22;269(5231):1714–1718. doi: 10.1126/science.269.5231.1714. [DOI] [PubMed] [Google Scholar]
  20. Rodolphe F., Lefort M. A multi-marker model for detecting chromosomal segments displaying QTL activity. Genetics. 1993 Aug;134(4):1277–1288. doi: 10.1093/genetics/134.4.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Weeks D. E., Lathrop G. M. Polygenic disease: methods for mapping complex disease traits. Trends Genet. 1995 Dec;11(12):513–519. doi: 10.1016/s0168-9525(00)89163-5. [DOI] [PubMed] [Google Scholar]
  22. Zeng Z. B. Precision mapping of quantitative trait loci. Genetics. 1994 Apr;136(4):1457–1468. doi: 10.1093/genetics/136.4.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy