Saltar para o conteúdo

Rotações por minuto

Origem: Wikipédia, a enciclopédia livre.
 Nota: "RPM" redireciona para este artigo. Para outros significados, veja RPM (desambiguação).
Um conta-giros de automóvel oferece leitura dos giros em RPM
(o número indicado pelo ponteiro deve ser multiplicado por mil)

Rotações por minuto (rpm, RPM, r/min, r.min−1, rot/min, ou rot.min−1) é uma unidade de velocidade angular. Trata-se de uma unidade não-SI, prática. De fato, a unidade SI equivalente é o radiano por segundo.

Aplicação prática

[editar | editar código-fonte]

A unidade, tanto para a frequência angular quanto para a velocidade angular (ou rotacional), é o radiano por segundo (rad.s−1). Porém, essa unidade é mais especificamente usada no domínio acadêmico-científico com enfoque mais teórico e de pesquisa.

A unidade "rotações por minuto" (RPM), por sua vez, é de uso generalizado na caracterização de vários tipos de motores, referindo-se, no caso dos motores automóveis, à velocidade de rotação da cambota ou virabrequim. De modo geral, para máquinas rotativas de qualquer natureza (elétrica, hidráulica, mecânica, térmica etc.), geradoras ou motoras (sob a óptica da conversão "de/para–mecânica"), fala-se em "rotações por minuto" para se referir à velocidade angular do eixo principal da máquina (de entrada, se for geradora; de saída, se motora). Nesse caso, tem-se frequência angular e velocidade angular cada qual em sua base conceitual, a depender do tipo de análise físico-matemática que se venha a fazer.

Conversão de RPM em rad.s−1

[editar | editar código-fonte]
  • Dado um valor expresso em RPM, multiplica-se-o por 0,104719755120 (arredondado ao excesso aos 10−12) para se o converter no equivalente em rad.s−1.
Com efeito: 1 RPM = 2π rad.min−1 = 2π/60 rad.s−1 = 0,104719755120 rad.s−1 (arredondado ao excesso aos 10−12)
  • Na conversão inversa, multiplica-se o valor dado em rad.s−1 por 9,549296585514 (arredondado ao excesso aos 10−12) para se obter o valor em RPM.
Isso decorre de ser [1/(2π/60)] = 9,549296585514 (arredondado ao excesso aos 10−12).

Exemplos de velocidades em RPM

[editar | editar código-fonte]
  • O ponteiro dos segundos de um relógio analógico movimenta-se à velocidade de 1 rpm.
  • Os discos de goma-laca rodam a velocidades de 78 rpm (os mais antigos), enquanto os discos de vinil (mais modernos, conquanto superados) rodam a velocidades típicas de 45 rpm (intermediários) ou 33⅓ rpm (os mais recentes).
  • Os CDs oscilam entre 180 rpm (quando da leitura dos setores mais afastados do centro do disco) e 500 rpm (na leitura dos setores mais próximos do centro).
  • O tambor (cilindro no Brasil) de uma máquina de lavar pode rodar a velocidades entre 500 até 1 800 rpm durante a centrifugação.
  • O motor de um automóvel ordinário, de uso comum, roda tipicamente entre 700 rpm (na marcha-lenta) e 7 000 rpm (no mais alto giro e velocidade).
  • O disco rígido IDE de computador roda a 3 600, 4 200, 5 400, ou 7 200 rpm; já os discos SATA e SCSI chegam a rodar a 10 000 ou 15 000 rpm.
  • Uma unidade de CD-ROM de 52x pode rodar um CD a velocidades de 10 350 rpm.
  • O motor de um carro de fórmula 1 chega perto das 20 000 rpm.[1]
  • Uma centrifugadora de enriquecimento de urânio roda a velocidades que podem ultrapassar 90 000 rpm.[2]
  • Uma turbina a gás roda a dezenas de milhares de rpm. As turbinas JetCat chegam a atingir velocidades de 165 000 rpm.[3]
  • Uma caneta odontológica de alta rotação (motor odontológico) chega à incrível velocidade de 400 000 rpm.[4]

Frequência e velocidade angulares

[editar | editar código-fonte]

Referida à velocidade angular (compreensão mais imediata à maioria), usa-se para medir a velocidade de rotação de um objeto sobre um eixo fixo (ou em relação a um centro de rotação definido) e significa o número de rotações completas efetuadas por minuto. Referida à frequência angular (não imediatamente compreensível à maioria), ela representa precisamente o número de ciclos havidos por unidade de tempo expresso em minutos num fenômeno periódico qualquer (não quântico ou quântico — neste último caso podendo referir-se a funções de onda complexas). Em tal último caso — quântico —, os significantes "rotações", "por" e "minuto", juntos, carecem do significado ordinário que se lhes dá em fenômenos não quânticos.

A distinção entre frequência angular e velocidade angular é importante, pois, embora as duas grandezas apresentem, num dado sistema de unidades, as mesmas dimensional analítica e dimensional sintética, em nível conceitual, todavia não são necessariamente a mesma grandeza, a mesma ideia.

Frequência complexa

[editar | editar código-fonte]

Ao se tratar de fenômenos físicos sob um aspecto mais amplo, que inclua os comportamentos transitórios e os de regime permanente, introduz-se o conceito de frequência complexa, de modo a reunir ambos os comportamentos numa só expressão mais geral, que comporte os individuais como casos particulares.

Chama-se frequência complexa ao binômio expresso por:

s = σ + j.ω
onde:
s = frequência complexa (expressa ora em nepers complexos por segundo, ora em radianos complexos por segundo);[5]
σ (sigma) = frequência neperiana ou real ( expressa em neper. s−1) e denota a "intensidade" do amortecimento transitório ao evoluir para o estado permanente;
j = unidade imaginária (j² = – 1)
ω (omega) = frequência angular ou imaginária (expressa em rad. s−1) e denota o "número de ciclos, giros ou voltas por segundo" da entidade em exame.

Frequência complexa foi aqui referida para realçar a natureza de inclusão (subconjunto conceitual) das frequências particulares (a real, amortecimento; a imaginária, giro), bem como para destacar que, nesse domínio, frequência angular também pode expressar-se em rotações por minuto, conquanto unidade não preferível no Sistema Internacional de Unidades.

Referências

  1. «FIA-Motores de fórmula 1». Consultado em 11 de abril de 2007. Arquivado do original em 3 de abril de 2007 
  2. Notícia do New York Times sobre centrifugadora do Dr. Zippe
  3. «Especificações da turbina JetCat P-60». Consultado em 11 de abril de 2007. Arquivado do original em 15 de abril de 2007 
  4. Dabi Atlante
  5. HAYT & KEMMERLY. Análise de Circuitos em Engenharia. São Paulo: McGraw-Hill, 1990.
  • HAYT & KEMMERLY. Análise de Circuitos em Engenharia. São Paulo: McGraw-Hill, 1990.
  • HOUAISS, Antônio. Dicionário Houaiss da Língua Portuguesa, Lisboa: Circulo dos Leitores, 2003. ISBN 972-42-2809-6
  • Vários. Lexicoteca-Moderna Enciclopédia Universal, Lisboa: Círculo de leitores, 1985. Tomo XVI

Ligações externas

[editar | editar código-fonte]
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy