In a multi-agent environment, where the outcomes of one's actions change dynamically because they are related to the behavior of other beings, it becomes difficult to make an optimal decision about how to act. Although game theory provides normative solutions for decision making in groups, how such decision-making strategies are altered by experience is poorly understood. These adaptive processes might resemble reinforcement learning algorithms, which provide a general framework for finding optimal strategies in a dynamic environment. Here we investigated the role of prefrontal cortex (PFC) in dynamic decision making in monkeys. As in reinforcement learning, the animal's choice during a competitive game was biased by its choice and reward history, as well as by the strategies of its opponent. Furthermore, neurons in the dorsolateral prefrontal cortex (DLPFC) encoded the animal's past decisions and payoffs, as well as the conjunction between the two, providing signals necessary to update the estimates of expected reward. Thus, PFC might have a key role in optimizing decision-making strategies.