In Files

  • complex.c

Class/Module Index [+]

Quicksearch

Complex

A complex number can be represented as a paired real number with imaginary unit; a+bi. Where a is real part, b is imaginary part and i is imaginary unit. Real a equals complex a+0i mathematically.

Complex object can be created as literal, and also by using Kernel#Complex, Complex::rect, Complex::polar or to_c method.

2+1i                 #=> (2+1i)
Complex(1)           #=> (1+0i)
Complex(2, 3)        #=> (2+3i)
Complex.polar(2, 3)  #=> (-1.9799849932008908+0.2822400161197344i)
3.to_c               #=> (3+0i)

You can also create complex object from floating-point numbers or strings.

Complex(0.3)         #=> (0.3+0i)
Complex('0.3-0.5i')  #=> (0.3-0.5i)
Complex('2/3+3/4i')  #=> ((2/3)+(3/4)*i)
Complex('1@2')       #=> (-0.4161468365471424+0.9092974268256817i)

0.3.to_c             #=> (0.3+0i)
'0.3-0.5i'.to_c      #=> (0.3-0.5i)
'2/3+3/4i'.to_c      #=> ((2/3)+(3/4)*i)
'1@2'.to_c           #=> (-0.4161468365471424+0.9092974268256817i)

A complex object is either an exact or an inexact number.

Complex(1, 1) / 2    #=> ((1/2)+(1/2)*i)
Complex(1, 1) / 2.0  #=> (0.5+0.5i)

Constants

I

The imaginary unit.

Public Class Methods

polar(abs[, arg]) → complex click to toggle source

Returns a complex object which denotes the given polar form.

Complex.polar(3, 0)            #=> (3.0+0.0i)
Complex.polar(3, Math::PI/2)   #=> (1.836909530733566e-16+3.0i)
Complex.polar(3, Math::PI)     #=> (-3.0+3.673819061467132e-16i)
Complex.polar(3, -Math::PI/2)  #=> (1.836909530733566e-16-3.0i)
 
               static VALUE
nucomp_s_polar(int argc, VALUE *argv, VALUE klass)
{
    VALUE abs, arg;

    switch (rb_scan_args(argc, argv, "11", &abs, &arg)) {
      case 1:
        nucomp_real_check(abs);
        if (canonicalization) return abs;
        return nucomp_s_new_internal(klass, abs, ZERO);
      default:
        nucomp_real_check(abs);
        nucomp_real_check(arg);
        break;
    }
    return f_complex_polar(klass, abs, arg);
}
            
rect(real[, imag]) → complex click to toggle source
rectangular(real[, imag]) → complex

Returns a complex object which denotes the given rectangular form.

Complex.rectangular(1, 2)  #=> (1+2i)
 
               static VALUE
nucomp_s_new(int argc, VALUE *argv, VALUE klass)
{
    VALUE real, imag;

    switch (rb_scan_args(argc, argv, "11", &real, &imag)) {
      case 1:
        nucomp_real_check(real);
        imag = ZERO;
        break;
      default:
        nucomp_real_check(real);
        nucomp_real_check(imag);
        break;
    }

    return nucomp_s_canonicalize_internal(klass, real, imag);
}
            
rectangular(real[, imag]) → complex click to toggle source

Returns a complex object which denotes the given rectangular form.

Complex.rectangular(1, 2)  #=> (1+2i)
 
               static VALUE
nucomp_s_new(int argc, VALUE *argv, VALUE klass)
{
    VALUE real, imag;

    switch (rb_scan_args(argc, argv, "11", &real, &imag)) {
      case 1:
        nucomp_real_check(real);
        imag = ZERO;
        break;
      default:
        nucomp_real_check(real);
        nucomp_real_check(imag);
        break;
    }

    return nucomp_s_canonicalize_internal(klass, real, imag);
}
            

Public Instance Methods

cmp * numeric → complex click to toggle source

Performs multiplication.

Complex(2, 3)  * Complex(2, 3)   #=> (-5+12i)
Complex(900)   * Complex(1)      #=> (900+0i)
Complex(-2, 9) * Complex(-9, 2)  #=> (0-85i)
Complex(9, 8)  * 4               #=> (36+32i)
Complex(20, 9) * 9.8             #=> (196.0+88.2i)
 
               VALUE
rb_complex_mul(VALUE self, VALUE other)
{
    if (RB_TYPE_P(other, T_COMPLEX)) {
        VALUE real, imag;
        get_dat2(self, other);

        comp_mul(adat->real, adat->imag, bdat->real, bdat->imag, &real, &imag);

        return f_complex_new2(CLASS_OF(self), real, imag);
    }
    if (k_numeric_p(other) && f_real_p(other)) {
        get_dat1(self);

        return f_complex_new2(CLASS_OF(self),
                              f_mul(dat->real, other),
                              f_mul(dat->imag, other));
    }
    return rb_num_coerce_bin(self, other, '*');
}
            
cmp ** numeric → complex click to toggle source

Performs exponentiation.

Complex('i') ** 2              #=> (-1+0i)
Complex(-8) ** Rational(1, 3)  #=> (1.0000000000000002+1.7320508075688772i)
 
               VALUE
rb_complex_pow(VALUE self, VALUE other)
{
    if (k_numeric_p(other) && k_exact_zero_p(other))
        return f_complex_new_bang1(CLASS_OF(self), ONE);

    if (RB_TYPE_P(other, T_RATIONAL) && RRATIONAL(other)->den == LONG2FIX(1))
        other = RRATIONAL(other)->num; /* c14n */

    if (RB_TYPE_P(other, T_COMPLEX)) {
        get_dat1(other);

        if (k_exact_zero_p(dat->imag))
            other = dat->real; /* c14n */
    }

    if (RB_TYPE_P(other, T_COMPLEX)) {
        VALUE r, theta, nr, ntheta;

        get_dat1(other);

        r = f_abs(self);
        theta = f_arg(self);

        nr = m_exp_bang(f_sub(f_mul(dat->real, m_log_bang(r)),
                              f_mul(dat->imag, theta)));
        ntheta = f_add(f_mul(theta, dat->real),
                       f_mul(dat->imag, m_log_bang(r)));
        return f_complex_polar(CLASS_OF(self), nr, ntheta);
    }
    if (FIXNUM_P(other)) {
        long n = FIX2LONG(other);
        if (n == 0) {
            return nucomp_s_new_internal(CLASS_OF(self), ONE, ZERO);
        }
        if (n < 0) {
            self = f_reciprocal(self);
            other = rb_int_uminus(other);
            n = -n;
        }
        {
            get_dat1(self);
            VALUE xr = dat->real, xi = dat->imag, zr = xr, zi = xi;

            if (f_zero_p(xi)) {
                zr = rb_num_pow(zr, other);
            }
            else if (f_zero_p(xr)) {
                zi = rb_num_pow(zi, other);
                if (n & 2) zi = f_negate(zi);
                if (!(n & 1)) {
                    VALUE tmp = zr;
                    zr = zi;
                    zi = tmp;
                }
            }
            else {
                while (--n) {
                    long q, r;

                    for (; q = n / 2, r = n % 2, r == 0; n = q) {
                        VALUE tmp = f_sub(f_mul(xr, xr), f_mul(xi, xi));
                        xi = f_mul(f_mul(TWO, xr), xi);
                        xr = tmp;
                    }
                    comp_mul(zr, zi, xr, xi, &zr, &zi);
                }
            }
            return nucomp_s_new_internal(CLASS_OF(self), zr, zi);
        }
    }
    if (k_numeric_p(other) && f_real_p(other)) {
        VALUE r, theta;

        if (RB_TYPE_P(other, T_BIGNUM))
            rb_warn("in a**b, b may be too big");

        r = f_abs(self);
        theta = f_arg(self);

        return f_complex_polar(CLASS_OF(self), f_expt(r, other),
                               f_mul(theta, other));
    }
    return rb_num_coerce_bin(self, other, id_expt);
}
            
cmp + numeric → complex click to toggle source

Performs addition.

Complex(2, 3)  + Complex(2, 3)   #=> (4+6i)
Complex(900)   + Complex(1)      #=> (901+0i)
Complex(-2, 9) + Complex(-9, 2)  #=> (-11+11i)
Complex(9, 8)  + 4               #=> (13+8i)
Complex(20, 9) + 9.8             #=> (29.8+9i)
 
               VALUE
rb_complex_plus(VALUE self, VALUE other)
{
    if (RB_TYPE_P(other, T_COMPLEX)) {
        VALUE real, imag;

        get_dat2(self, other);

        real = f_add(adat->real, bdat->real);
        imag = f_add(adat->imag, bdat->imag);

        return f_complex_new2(CLASS_OF(self), real, imag);
    }
    if (k_numeric_p(other) && f_real_p(other)) {
        get_dat1(self);

        return f_complex_new2(CLASS_OF(self),
                              f_add(dat->real, other), dat->imag);
    }
    return rb_num_coerce_bin(self, other, '+');
}
            
cmp - numeric → complex click to toggle source

Performs subtraction.

Complex(2, 3)  - Complex(2, 3)   #=> (0+0i)
Complex(900)   - Complex(1)      #=> (899+0i)
Complex(-2, 9) - Complex(-9, 2)  #=> (7+7i)
Complex(9, 8)  - 4               #=> (5+8i)
Complex(20, 9) - 9.8             #=> (10.2+9i)
 
               VALUE
rb_complex_minus(VALUE self, VALUE other)
{
    if (RB_TYPE_P(other, T_COMPLEX)) {
        VALUE real, imag;

        get_dat2(self, other);

        real = f_sub(adat->real, bdat->real);
        imag = f_sub(adat->imag, bdat->imag);

        return f_complex_new2(CLASS_OF(self), real, imag);
    }
    if (k_numeric_p(other) && f_real_p(other)) {
        get_dat1(self);

        return f_complex_new2(CLASS_OF(self),
                              f_sub(dat->real, other), dat->imag);
    }
    return rb_num_coerce_bin(self, other, '-');
}
            
-cmp → complex click to toggle source

Returns negation of the value.

-Complex(1, 2)  #=> (-1-2i)
 
               VALUE
rb_complex_uminus(VALUE self)
{
    get_dat1(self);
    return f_complex_new2(CLASS_OF(self),
                          f_negate(dat->real), f_negate(dat->imag));
}
            
cmp / numeric → complex click to toggle source
quo(numeric) → complex

Performs division.

Complex(2, 3)  / Complex(2, 3)   #=> ((1/1)+(0/1)*i)
Complex(900)   / Complex(1)      #=> ((900/1)+(0/1)*i)
Complex(-2, 9) / Complex(-9, 2)  #=> ((36/85)-(77/85)*i)
Complex(9, 8)  / 4               #=> ((9/4)+(2/1)*i)
Complex(20, 9) / 9.8             #=> (2.0408163265306123+0.9183673469387754i)
 
               VALUE
rb_complex_div(VALUE self, VALUE other)
{
    return f_divide(self, other, f_quo, id_quo);
}
            
cmp <=> object → 0, 1, -1, or nil click to toggle source

If cmp's imaginary part is zero, and object is also a real number (or a Complex number where the imaginary part is zero), compare the real part of cmp to object. Otherwise, return nil.

Complex(2, 3)  <=> Complex(2, 3)   #=> nil
Complex(2, 3)  <=> 1               #=> nil
Complex(2)     <=> 1               #=> 1
Complex(2)     <=> 2               #=> 0
Complex(2)     <=> 3               #=> -1
 
               static VALUE
nucomp_cmp(VALUE self, VALUE other)
{
    if (nucomp_real_p(self) && k_numeric_p(other)) {
        if (RB_TYPE_P(other, T_COMPLEX) && nucomp_real_p(other)) {
            get_dat2(self, other);
            return rb_funcall(adat->real, idCmp, 1, bdat->real);
        }
        else if (f_real_p(other)) {
            get_dat1(self);
            return rb_funcall(dat->real, idCmp, 1, other);
        }
    }
    return Qnil;
}
            
cmp == object → true or false click to toggle source

Returns true if cmp equals object numerically.

Complex(2, 3)  == Complex(2, 3)   #=> true
Complex(5)     == 5               #=> true
Complex(0)     == 0.0             #=> true
Complex('1/3') == 0.33            #=> false
Complex('1/2') == '1/2'           #=> false
 
               static VALUE
nucomp_eqeq_p(VALUE self, VALUE other)
{
    if (RB_TYPE_P(other, T_COMPLEX)) {
        get_dat2(self, other);

        return f_boolcast(f_eqeq_p(adat->real, bdat->real) &&
                          f_eqeq_p(adat->imag, bdat->imag));
    }
    if (k_numeric_p(other) && f_real_p(other)) {
        get_dat1(self);

        return f_boolcast(f_eqeq_p(dat->real, other) && f_zero_p(dat->imag));
    }
    return f_boolcast(f_eqeq_p(other, self));
}
            
abs → real click to toggle source

Returns the absolute part of its polar form.

Complex(-1).abs         #=> 1
Complex(3.0, -4.0).abs  #=> 5.0
 
               VALUE
rb_complex_abs(VALUE self)
{
    get_dat1(self);

    if (f_zero_p(dat->real)) {
        VALUE a = f_abs(dat->imag);
        if (RB_FLOAT_TYPE_P(dat->real) && !RB_FLOAT_TYPE_P(dat->imag))
            a = f_to_f(a);
        return a;
    }
    if (f_zero_p(dat->imag)) {
        VALUE a = f_abs(dat->real);
        if (!RB_FLOAT_TYPE_P(dat->real) && RB_FLOAT_TYPE_P(dat->imag))
            a = f_to_f(a);
        return a;
    }
    return rb_math_hypot(dat->real, dat->imag);
}
            
abs2 → real click to toggle source

Returns square of the absolute value.

Complex(-1).abs2         #=> 1
Complex(3.0, -4.0).abs2  #=> 25.0
 
               static VALUE
nucomp_abs2(VALUE self)
{
    get_dat1(self);
    return f_add(f_mul(dat->real, dat->real),
                 f_mul(dat->imag, dat->imag));
}
            
angle → float click to toggle source

Returns the angle part of its polar form.

Complex.polar(3, Math::PI/2).arg  #=> 1.5707963267948966
 
               VALUE
rb_complex_arg(VALUE self)
{
    get_dat1(self);
    return rb_math_atan2(dat->imag, dat->real);
}
            
arg → float click to toggle source

Returns the angle part of its polar form.

Complex.polar(3, Math::PI/2).arg  #=> 1.5707963267948966
 
               VALUE
rb_complex_arg(VALUE self)
{
    get_dat1(self);
    return rb_math_atan2(dat->imag, dat->real);
}
            
conj → complex click to toggle source
conjugate → complex

Returns the complex conjugate.

Complex(1, 2).conjugate  #=> (1-2i)
 
               VALUE
rb_complex_conjugate(VALUE self)
{
    get_dat1(self);
    return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->imag));
}
            
conjugate → complex click to toggle source

Returns the complex conjugate.

Complex(1, 2).conjugate  #=> (1-2i)
 
               VALUE
rb_complex_conjugate(VALUE self)
{
    get_dat1(self);
    return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->imag));
}
            
denominator → integer click to toggle source

Returns the denominator (lcm of both denominator - real and imag).

See numerator.

 
               static VALUE
nucomp_denominator(VALUE self)
{
    get_dat1(self);
    return rb_lcm(f_denominator(dat->real), f_denominator(dat->imag));
}
            
fdiv(numeric) → complex click to toggle source

Performs division as each part is a float, never returns a float.

Complex(11, 22).fdiv(3)  #=> (3.6666666666666665+7.333333333333333i)
 
               static VALUE
nucomp_fdiv(VALUE self, VALUE other)
{
    return f_divide(self, other, f_fdiv, id_fdiv);
}
            
finite? → true or false click to toggle source

Returns true if cmp's real and imaginary parts are both finite numbers, otherwise returns false.

 
               static VALUE
rb_complex_finite_p(VALUE self)
{
    get_dat1(self);

    if (f_finite_p(dat->real) && f_finite_p(dat->imag)) {
        return Qtrue;
    }
    return Qfalse;
}
            
imag → real click to toggle source
imaginary → real

Returns the imaginary part.

Complex(7).imaginary      #=> 0
Complex(9, -4).imaginary  #=> -4
 
               VALUE
rb_complex_imag(VALUE self)
{
    get_dat1(self);
    return dat->imag;
}
            
imaginary → real click to toggle source

Returns the imaginary part.

Complex(7).imaginary      #=> 0
Complex(9, -4).imaginary  #=> -4
 
               VALUE
rb_complex_imag(VALUE self)
{
    get_dat1(self);
    return dat->imag;
}
            
infinite? → nil or 1 click to toggle source

Returns 1 if cmp's real or imaginary part is an infinite number, otherwise returns nil.

For example:

   (1+1i).infinite?                   #=> nil
   (Float::INFINITY + 1i).infinite?   #=> 1
 
               static VALUE
rb_complex_infinite_p(VALUE self)
{
    get_dat1(self);

    if (NIL_P(f_infinite_p(dat->real)) && NIL_P(f_infinite_p(dat->imag))) {
        return Qnil;
    }
    return ONE;
}
            
inspect → string click to toggle source

Returns the value as a string for inspection.

Complex(2).inspect                       #=> "(2+0i)"
Complex('-8/6').inspect                  #=> "((-4/3)+0i)"
Complex('1/2i').inspect                  #=> "(0+(1/2)*i)"
Complex(0, Float::INFINITY).inspect      #=> "(0+Infinity*i)"
Complex(Float::NAN, Float::NAN).inspect  #=> "(NaN+NaN*i)"
 
               static VALUE
nucomp_inspect(VALUE self)
{
    VALUE s;

    s = rb_usascii_str_new2("(");
    rb_str_concat(s, f_format(self, rb_inspect));
    rb_str_cat2(s, ")");

    return s;
}
            
magnitude → real click to toggle source

Returns the absolute part of its polar form.

Complex(-1).abs         #=> 1
Complex(3.0, -4.0).abs  #=> 5.0
 
               VALUE
rb_complex_abs(VALUE self)
{
    get_dat1(self);

    if (f_zero_p(dat->real)) {
        VALUE a = f_abs(dat->imag);
        if (RB_FLOAT_TYPE_P(dat->real) && !RB_FLOAT_TYPE_P(dat->imag))
            a = f_to_f(a);
        return a;
    }
    if (f_zero_p(dat->imag)) {
        VALUE a = f_abs(dat->real);
        if (!RB_FLOAT_TYPE_P(dat->real) && RB_FLOAT_TYPE_P(dat->imag))
            a = f_to_f(a);
        return a;
    }
    return rb_math_hypot(dat->real, dat->imag);
}
            
numerator → numeric click to toggle source

Returns the numerator.

    1   2       3+4i  <-  numerator
    - + -i  ->  ----
    2   3        6    <-  denominator

c = Complex('1/2+2/3i')  #=> ((1/2)+(2/3)*i)
n = c.numerator          #=> (3+4i)
d = c.denominator        #=> 6
n / d                    #=> ((1/2)+(2/3)*i)
Complex(Rational(n.real, d), Rational(n.imag, d))
                         #=> ((1/2)+(2/3)*i)

See denominator.

 
               static VALUE
nucomp_numerator(VALUE self)
{
    VALUE cd;

    get_dat1(self);

    cd = nucomp_denominator(self);
    return f_complex_new2(CLASS_OF(self),
                          f_mul(f_numerator(dat->real),
                                f_div(cd, f_denominator(dat->real))),
                          f_mul(f_numerator(dat->imag),
                                f_div(cd, f_denominator(dat->imag))));
}
            
phase → float click to toggle source

Returns the angle part of its polar form.

Complex.polar(3, Math::PI/2).arg  #=> 1.5707963267948966
 
               VALUE
rb_complex_arg(VALUE self)
{
    get_dat1(self);
    return rb_math_atan2(dat->imag, dat->real);
}
            
polar → array click to toggle source

Returns an array; [cmp.abs, cmp.arg].

Complex(1, 2).polar  #=> [2.23606797749979, 1.1071487177940904]
 
               static VALUE
nucomp_polar(VALUE self)
{
    return rb_assoc_new(f_abs(self), f_arg(self));
}
            
cmp / numeric → complex click to toggle source
quo(numeric) → complex

Performs division.

Complex(2, 3)  / Complex(2, 3)   #=> ((1/1)+(0/1)*i)
Complex(900)   / Complex(1)      #=> ((900/1)+(0/1)*i)
Complex(-2, 9) / Complex(-9, 2)  #=> ((36/85)-(77/85)*i)
Complex(9, 8)  / 4               #=> ((9/4)+(2/1)*i)
Complex(20, 9) / 9.8             #=> (2.0408163265306123+0.9183673469387754i)
 
               VALUE
rb_complex_div(VALUE self, VALUE other)
{
    return f_divide(self, other, f_quo, id_quo);
}
            
rationalize([eps]) → rational click to toggle source

Returns the value as a rational if possible (the imaginary part should be exactly zero).

Complex(1.0/3, 0).rationalize  #=> (1/3)
Complex(1, 0.0).rationalize    # RangeError
Complex(1, 2).rationalize      # RangeError

See to_r.

 
               static VALUE
nucomp_rationalize(int argc, VALUE *argv, VALUE self)
{
    get_dat1(self);

    rb_check_arity(argc, 0, 1);

    if (!k_exact_zero_p(dat->imag)) {
       rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational",
                self);
    }
    return rb_funcallv(dat->real, id_rationalize, argc, argv);
}
            
real → real click to toggle source

Returns the real part.

Complex(7).real      #=> 7
Complex(9, -4).real  #=> 9
 
               VALUE
rb_complex_real(VALUE self)
{
    get_dat1(self);
    return dat->real;
}
            
Complex(1).real? → false click to toggle source
Complex(1, 2).real? → false

Returns false, even if the complex number has no imaginary part.

 
               static VALUE
nucomp_false(VALUE self)
{
    return Qfalse;
}
            
rect → array click to toggle source
rectangular → array

Returns an array; [cmp.real, cmp.imag].

Complex(1, 2).rectangular  #=> [1, 2]
 
               static VALUE
nucomp_rect(VALUE self)
{
    get_dat1(self);
    return rb_assoc_new(dat->real, dat->imag);
}
            
rect → array click to toggle source
rectangular → array

Returns an array; [cmp.real, cmp.imag].

Complex(1, 2).rectangular  #=> [1, 2]
 
               static VALUE
nucomp_rect(VALUE self)
{
    get_dat1(self);
    return rb_assoc_new(dat->real, dat->imag);
}
            
to_c → self click to toggle source

Returns self.

Complex(2).to_c      #=> (2+0i)
Complex(-8, 6).to_c  #=> (-8+6i)
 
               static VALUE
nucomp_to_c(VALUE self)
{
    return self;
}
            
to_f → float click to toggle source

Returns the value as a float if possible (the imaginary part should be exactly zero).

Complex(1, 0).to_f    #=> 1.0
Complex(1, 0.0).to_f  # RangeError
Complex(1, 2).to_f    # RangeError
 
               static VALUE
nucomp_to_f(VALUE self)
{
    get_dat1(self);

    if (!k_exact_zero_p(dat->imag)) {
        rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Float",
                 self);
    }
    return f_to_f(dat->real);
}
            
to_i → integer click to toggle source

Returns the value as an integer if possible (the imaginary part should be exactly zero).

Complex(1, 0).to_i    #=> 1
Complex(1, 0.0).to_i  # RangeError
Complex(1, 2).to_i    # RangeError
 
               static VALUE
nucomp_to_i(VALUE self)
{
    get_dat1(self);

    if (!k_exact_zero_p(dat->imag)) {
        rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Integer",
                 self);
    }
    return f_to_i(dat->real);
}
            
to_r → rational click to toggle source

Returns the value as a rational if possible (the imaginary part should be exactly zero).

Complex(1, 0).to_r    #=> (1/1)
Complex(1, 0.0).to_r  # RangeError
Complex(1, 2).to_r    # RangeError

See rationalize.

 
               static VALUE
nucomp_to_r(VALUE self)
{
    get_dat1(self);

    if (!k_exact_zero_p(dat->imag)) {
        rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational",
                 self);
    }
    return f_to_r(dat->real);
}
            
to_s → string click to toggle source

Returns the value as a string.

Complex(2).to_s                       #=> "2+0i"
Complex('-8/6').to_s                  #=> "-4/3+0i"
Complex('1/2i').to_s                  #=> "0+1/2i"
Complex(0, Float::INFINITY).to_s      #=> "0+Infinity*i"
Complex(Float::NAN, Float::NAN).to_s  #=> "NaN+NaN*i"
 
               static VALUE
nucomp_to_s(VALUE self)
{
    return f_format(self, rb_String);
}
            
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy